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ABSTRACT

Takagi-Sugeno (T-S) fuzzy models have been extensively investigated
over the last decade to develop the so-called fuzzy model based (FMB)
control techniques, providing nonlinear control design methodologies
with a systematic aspect and numerical solution. However, the actual
T-S fuzzy modeling techniques, in general, only guarantee the conve-
xity of the model and/or their accuracy of representation for a specific
domain of the state space. Thus, for control strategies based on con-
vexity properties, the stability of the closed-loop system composed of
the nonlinear system and the fuzzy controller should be analyzed in
a local context, being fundamental to determine stability regions for
the closed-loop system. This inherent local characteristic is often not
considered in most FMB control design results, which may lead to poor
performance or even instability of the closed-loop system.
In this sense, this thesis aims to consider the regional validity of the T-S
fuzzy models for the development of nonlinear discrete-time control sys-
tems analysis and design tools, to consider other physical constraints
and to discuss the problems associated with the complexity of T-S
fuzzy models. A modeling method based on the use of nonlinear local
rules that provides a compact and accurate representation is presented,
allowing also to handle with the dynamic output feedback control pro-
blem for systems with nonlinearities that may depend on unmeasurable
states. Using fuzzy Lyapunov functions (FLF), closed-loop stability
conditions are provided, which can be verified in terms of the feasibility
of a set of linear matrix inequalities (LMIs). The proposed controllers
are based on a state and sector nonlinearities feedback, for systems
subject to disturbances bounded in energy or amplitude, and on a dy-
namic output feedback, for systems with saturating actuators. Numeri-
cal examples are presented throughout this document to illustrate the
effectiveness of the proposed design methodologies. Further, aiming to
assist students and engineers in the nonlinear control system design,
an interactive computational tool is presented for fuzzy modeling and
control. Practical aspects and a study of the digital implementation of
fuzzy controllers are discussed using a Hardware-in-the-Loop (HIL) si-
mulation with a Field Programmable Gate Array (FPGA) development
board.

Keywords: nonlinear systems, local stability, T-S fuzzy models, dis-
turbances.





RESUMO EXPANDIDO

CONTROLE DE SISTEMAS NÃO LINEARES
UTILIZANDO MODELOS N-FUZZY

Palavras-chave: sistemas não lineares, estabilidade local, modelos
fuzzy T-S, perturbações.

Introdução

A utilização de modelos fuzzy Takagi-Sugeno (T-S) tem sido
extensivamente investigada no decorrer das últimas décadas, principal-
mente por propiciarem o desenvolvimento de metodologias de projeto
de sistemas de controle não lineares que possuem caráter sistemático e
solução numérica. Uma importante razão para isto é que os modelos
T-S (TAKAGI; SUGENO, 1985) fornecem uma representação de plantas
não lineares por uma combinação de submodelos lineares locais (ou
afins) invariantes no tempo, também chamados de regras, permitindo
estender e utilizar de forma natural e elegante alguns resultados e fer-
ramentas comuns à teoria de controle robusto e de sistemas lineares
com parâmetros variantes (LPV, do inglês Linear Parameter Varying)
(MOZELLI; PALHARES, 2011b). Tal combinação de regras é controlada
por funções peso-normalizadas, denominadas de funções de pertinên-
cia (GAO et al., 2012). Este conceito é mais amplo que a linearização
da planta em um único ponto de interesse, pois possibilita a descrição
em regiões mais distantes, formando um domínio de operação para o
sistema.

Muito embora diversos resultados de análise de estabilidade e sín-
tese de controladores sejam encontrados na literatura, existem questões
com motivação prática que permanecem em aberto no contexto do con-
trole fuzzy baseado em modelo (FMB, do inglês Fuzzy Model Based)
(FENG, 2010). Em geral, as técnicas de modelagem fuzzy T-S atu-
ais garantem a convexidade do modelo e/ou a sua precisão de repre-
sentação somente para uma determinada região do espaço de estados.
Desta forma, para estratégias de controle baseadas em propriedades
de convexidade, a estabilidade do sistema de malha fechada formado
pelo sistema não linear realimentado pela lei de controle fuzzy deve ser
estudada no contexto de estabilidade local, sendo fundamental a deter-
minação de regiões de estabilidade para o sistema de malha fechada.



Esta importante característica dos modelos fuzzy T-S raramente é con-
siderada na literatura, podendo implicar em perda de desempenho e até
mesmo instabilidade do sistema em malha fechada (KLUG et al., 2014).
Outro problema inerente à utilização de modelos fuzzy T-S diz respeito
ao aumento exponencial de complexidade do modelo com o número
de não linearidades presentes no sistema (LAM, 2011), principalmente
quando se busca descrever de forma exata a dinâmica do sistema a
controlar, o que implica no aumento da complexidade numérica dos
algoritmos para análise e projeto, assim como do aumento da comple-
xidade de implementação de leis de controle.

Neste contexto, esta tese busca evidenciar a importância da con-
sideração da validade regional dos modelos fuzzy de tipo T-S para o
desenvolvimento de ferramentas de análise e síntese de sistemas de con-
trole não lineares, assim como considerar outras restrições físicas pre-
sentes no sistema de controle como limites nos atuadores, e discutir a
problemática associada à complexidade dos modelos fuzzy T-S.

Objetivos

De modo geral, um dos problemas que devem ser resolvidos no
projeto de controladores fuzzy T-S aplicados a sistemas não lineares
diz respeito à consideração das restrições impostas tanto pelo processo
de modelagem, relacionado ao domínio de validade regional do modelo,
quanto a restrições físicas comuns aos atuadores, e também na presença
de sinais externos comumente encontrados em sistemas reais. Neste
contexto, os seguintes objetivos específicos são estabelecidos:

• Definir um arcabouço de ferramentas teóricas e algorítmicas para
a consideração do domínio de validade dos modelos fuzzy T-S
no projeto de sistemas de controle não lineares, utilizando tam-
bém da teoria de estabilidade de Lyapunov para a construção de
conjuntos contrativos de forma a estimar a região de atração do
sistema de malha fechada (calcular regiões de estabilidade);

• Formalizar um processo de modelagem com redução do número
de regras que possibilite uma menor complexidade numérica, per-
mitindo também a implementação de controladores por realimen-
tação dinâmica de saídas com não linearidades que dependam de
estados não mensuráveis do sistema. Este processo de modelagem
é baseado na utilização de modelos fuzzy T-S com submodelos não
lineares locais, denominados neste trabalho de modelos N-fuzzy;

• Desenvolver condições de análise de estabilidade e síntese de con-
troladores com garantia de desempenho para sistemas não lineares



representados por modelos N-fuzzy, levando em consideração o
domínio de validade regional com estimação de regiões de estabi-
lidade e perturbações externas, como as de energia limitada e/ou
as de amplitude limitada;

• Efetuar simulações Hardware-in-the-Loop (HIL) considerando que
as plantas sejam emuladas virtualmente e os controladores imple-
mentados em uma plataforma programável real, a fim de analisar
a complexidade de implementação digital de controladores fuzzy
clássicos e N-fuzzy;

• Prover uma ferramenta interativa à comunidade científica rela-
cionada com vistas a auxiliar estes usuáros no projeto de controle
não linear usando técnicas fuzzy.

Contextualização

A lógica fuzzy foi introduzida pelo professor Lofti A. Zadeh da
Universidade da Califórnia, a qual definiu uma nova teoria de conjuntos
(ZADEH, 1965). O princípio fundamental desta lógica é que um determi-
nado elemento pode pertencer, em um certo grau, a um conjunto e, em
um outro grau, a um outro conjunto. Nota-se este tipo de relação de
pertinência em várias situações da natureza e na vida cotidiana. Esta
percepção foi relacionada posteriormente à similaridade com o com-
portamento humano na solução de problemas complexos, permitindo
por exemplo, que o projetista utilize o conhecimento experimental para
elaborar o projeto de controle do seu sistema. Desde então, a teoria de
lógica fuzzy tem sido utilizada com sucesso em diversas aplicações de
engenharia, e dentre as várias arquiteturas existentes, destaca-se o uso
dos modelos fuzzy T-S (FENG, 2010).

Os modelos fuzzy T-S baseiam-se na utilização de um conjunto
de regras fuzzy para descrever um sistema não linear em termos de sub-
modelos lineares/afins invariantes no tempo e locais, conectados por
funções de pertinência que controlam a lei de interpolação entre as re-
gras. Esta representação facilita, através da utilização da teoria de Lya-
punov, a descrição dos problemas de controle na forma de desigualdades
matriciais lineares (LMIs, do inglês Linear Matrix Inequalities) (BOYD

et al., 1994), e portanto a obtenção de solução numérica confiável. Um
método comum é o uso de funções de Lyapunov quadráticas, ao qual
porém, em geral, conduzem a resultados conservadores. Recentemente,
funções de Lyapunov fuzzy (FLF, do inglês Fuzzy Lyapunov Function)
tem sido utilizadas para se obter condições de projeto menos conser-



vadores ao custo de um aumento da carga computacional (GUERRA;

VERMEIREN, 2004).
Neste contexto, o número de regras para representação do mo-

delo T-S pode tornar o problema de projeto de controle computacional-
mente intratável, ao qual poucos estudos se destinam a reduzir o número
de regras mantendo a descrição exata do sistema original. Excetuam-se
os trabalhos de Dong, Wang & Yang (2009, 2010) e Klug & Castelan
(2011), ao qual admitem que determinados termos não lineares per-
tencentes a setores limitados apareçam explicitamente nos submodelos
locais. Isto é perfeitamente aplicável na prática, visto que uma grande
classe de não linearidades verificam condições de setor ao menos lo-
calmente, além de trazer o mecanismo matemático desenvolvido para
lidar com não linearidades de setor para o controle de sistemas FMB
(LIBERZON, 2006).

Outros aspectos práticos estão relacionados com não linearidades
inerentes aos atuadores, tais como saturação, zona morta e/ou histerese.
Por exemplo, a presença de saturação (TARBOURIECH et al., 2011a)
pode causar efeitos indesejados, como o surgimento de ciclos limites
e pontos de equilíbrio, deterioração do desempenho e até mesmo ins-
tabilidade do sistema de malha fechada. Além disso, a importante
característica de validade local de convexidade dos modelos fuzzy T-S
normalmente não é considerada na literatura, podendo comprometer
o uso dos controladores obtidos por estas metodologias, com a possi-
bilidade do sistema de controle violar os limites seguros de operação,
perder desempenho ou até mesmo instabilizar as trajetórias do sistema
de malha fechada.

Contribuições da Tese

Dentre as contribuições da pesquisa realizada, no Capítulo 2 é
apresentado a formalização de uma técnica de modelagem fuzzy baseada
na utilização de submodelos não lineares que permite a redução do
número de regras fuzzy sem comprometer a exatidão da representação.
Esta metodologia pode ser uma importante fonte de redução de com-
plexidade numérica, facilitando a obtenção de soluções factíveis ao pro-
blema de controle posteriormente definido. Além disso, a flebilidade
proporcionada por esta metodologia permite ao projetista modificar a
lei de controle convenientemente, para possuir ou não termos de reali-
mentação do vetor de não linearidades de setor, tornando possível por
exemplo a implementação de controladores por realimentação dinâmica
de saídas de sistemas que possuam não linearidades que dependam de



estados não mensuráveis do sistema. Nos Capítulos 3, 4 e 5, partindo
da utilização de funções de Lyapunov fuzzy para definir condições de
estabilidade para o sistema em malha fechada, obtém-se ferramentais
baseados em desigualdades matriciais lineares, aos quais são utiliza-
dos para o projeto de controladores. Os controladores propostos são
baseados na realimentação de estados e do vetor de não linearidades
de setor, ao qual são consideradas perturbações limitadas em energia
ou amplitude, e na realimentação dinâmica de saídas, para sistemas
não perturbados com atuadores saturantes ou para sistemas sujeitos a
perturbações persistentes. Em todos os casos a importante caracterís-
tica local da modelagem fuzzy T-S é levada em consideração na fase de
projeto, ao qual através de uma condição de inclusão garante-se que as
trajetórias do sistema de malha fechada evoluam apenas no interior do
domínio garantido de validade de convexidade do modelo fuzzy T-S.

Além disso, objetivando auxiliar estudantes, engenheiros e pes-
quisadores na análise e projeto de controle de sistemas não lineares,
apresenta-se no Capítulo 6 o desenvolvimento de uma ferramenta com-
putacional interativa para a modelagem e controle fuzzy. Complemen-
tarmente, aspectos práticos e um estudo da complexidade de imple-
mentação digital de controladores fuzzy são discutidos através de uma
simulação Hardware-in-the-Loop (HIL) com utilização de uma placa de
desenvolvimento FPGA (do inglês Field Programmable Gate Array).

Conclusão

Nesta tese, novas abordagens para o projeto de controladores
aplicados a sistemas não lineares em tempo discreto que possam ser re-
presentados por modelos fuzzy T-S são desenvolvidas. Considera-se um
método alternativo de modelagem baseado no uso de regras não lineares
locais, que possibilita os seguintes benefícios: i) redução do número de
regras em relação a abordagem clássica, que conduz a uma diminuição
da complexidade numérica mantendo a exatidão da representação e ii)
flexibilidade no controle, permitindo o projeto e implementação prática
de controladores por realimentação dinâmica de saídas na presença de
não linearidades que dependam de estados não mensuráveis do sistema.
Além disso, os resultados propostos consideram os problemas inerentes
ao projeto de controle, tais como a validade regional dos modelos fuzzy
T-S, restrições físicas nos atuadores, e a presença de sinais externos
usualmente encontrados em sistemas reais. Exemplos numéricos são
apresentados ao longo do trabalho com o objetivo de ilustrar a eficiên-
cia dos métodos propostos.
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NOTATIONS

⊂(⊆) Subset (subset or equal)

∈ Included

/∈ Not included

∀ For all

ℜ Set of real numbers

ℜ+ Set of non-negative real numbers

Z+ Set of non-negative integer numbers

ℜn n-dimensional real vector space

ℜn×m n × m-dimensional real matrix

x(i) ith element of vector x

X{i} ith row of matrix X

A′ (a′) Transpose of a matrix (vector) A (a)

A−1 Inverse of a matrix A

||A|| Euclidean norm of a matrix A

A > B For two matrices, A − B is positive definite

A ≥ B For two matrices, A − B is positive semi-definite

diag{A, B} Block diagonal matrix, with main diagonal blocks A

and B

S[0, Ω] Cone sector condition

N (N) Null space (kernel) of N

I (0) Identity (zero) matrix with appropriate dimension

In (0n) n-dimensional identity (zero) matrix

⋆ Symmetric block with respect to the main diagonal of

a matrix

• Element that has no influence on the development
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1 INTRODUCTION

The control of nonlinear systems by means of fuzzy models has
become quite popular over the last decades, attracting the attention
of many researchers in Brazil and abroad. In particular, among the
various studies and applications of Fuzzy Model Based (FMB) control
techniques, the Takagi-Sugeno (T-S) fuzzy models (TAKAGI; SUGENO,
1985) have emerged as a successful approach. An important reason for
this is that the T-S models can represent nonlinear systems in terms of
local linear (or affine) time-invariant submodels, smoothly connected
by means of nonlinear fuzzy membership functions (KOSKO, 1997; GAO

et al., 2012) allowing the application of well-established Lyapunov and
Linear Matrix Inequality (LMI) based tools for parameter varying con-
trol systems (MOZELLI; PALHARES, 2011b; KLUG; CASTELAN, 2012).
This modeling technique is more comprehensive than the linearization
of the plant at a single equilibrium point, since it allows a more accu-
rate description at distant regions, forming a wider operating domain
for the system. Figure 1 represents a fuzzy description of a certain class
of nonlinear systems to be studied in this thesis.

uu yy

Nonlinear Plant T-S Fuzzy Model

x+ = f(x) + V (x)u(k)
+T (x)w(k)

y = Cx
∀x ∈ X ⊂ ℜn

Ri :
IF ν1 is M i

1 and ... νs is M i
ns

THEN

{

x+ = Aix + Biu(k)
+Bwiw(k) + Giϕ(k)

y = Cx

∀x ∈ X ⊂ ℜn

Figure 1 – T-S fuzzy models for nonlinear systems

A key issue when applying a T-S fuzzy representation for con-
trol purposes is the model accuracy, since T-S models can exactly or
approximately represent the original nonlinear system to be controlled.
In the exact description, the number of submodels, also known as fuzzy
rules, increase exponentially with the number of nonlinearities, conse-
quently increasing the numerical complexity of the control algorithms
and complicating their implementation (LAM, 2011). To prevent a large
number of rules, approximate models as described in Teixeira & Zak
(1999) might be employed, which add some model inaccuracy, and may
result in the loss of performance or even the instability of the closed-
loop system.
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Even though the exact T-S fuzzy representation has identical dy-
namics1 to the original nonlinear system, the convexity of the model
can only be guaranteed in a specific domain of the state space. Thus,
for control strategies based on convex properties, the performance and
dynamic behavior of the control system composed of the feedback in-
terconnection of the nonlinear plant and the fuzzy controller may dete-
riorate if the system states evolve outside this domain. This inherent
local characteristic of the fuzzy model should be taken into account
when using fuzzy controllers applied to nonlinear plants, whether in
the design phase, as considered in this work, or in subsequent analy-
sis. This important aspect, which directly affects the practical results,
is rarely considered in literature, and imposes the use of local stabi-
lity concepts that, in consequence, can be dealt with the definition of
contractive sets. The notion of contractive sets is basic to determine
asymptotic stability regions for nonlinear systems, usually performed
using Lyapunov functions. In this way, regions of admissible initial con-
ditions that asymptotically converge to the origin are found (OLIVEIRA

et al., 2011), and can be used as estimates of the domain of attraction
of the closed-loop system (KHALIL, 2003).

In recent works, such as the articles Chadli & Guerra (2012), Li
et al. (2014) and Zhu et al. (2015), a numerical complexity reduction of
the control algorithms is obtained by decreasing the number of LMIs to
be solved using the representation of nonlinear plants by descriptor sys-
tems. However, this approach does not effectively reduce the number
of rules in the T-S fuzzy model, and few studies commit to maintaining
the exact description of the original system. Some exceptions are the
works Dong, Wang & Yang (2009, 2010), nevertheless without consi-
dering the T-S fuzzy models local characteristic, and the works Klug
& Castelan (2011) and Klug, Castelan & Coutinho (2013), in which it
is possible to reduce the number of fuzzy rules without compromising
the model exactness by applying the technique referred to as N-fuzzy
modeling. In this approach, some nonlinear sector bounded terms may
explicitly appear in the T-S fuzzy models at the cost of losing the linea-
rity of classical fuzzy modeling. This is perfectly reasonable in practice,
since a large class of nonlinearities, as well as sensors and actuators lim-
itations, can be considered as sector bounded functions, at least locally.
In spite of losing the linearity of the fuzzy model, the N-fuzzy approach
is quite interesting since the well-established mathematical machinery
developed to handle sector bounded nonlinearities (such as the abso-

1Identical dynamics refers to the trajectories of the nonlinear system and its
respective fuzzy model having the same behavior.
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lute stability theory (KHALIL, 2003; LIBERZON, 2006)) can be applied
to FMB control design.

At this point, it is worth mentioning that the research about
the use of the nonlinear fuzzy models cited in the last paragraph was
initiated by the author during the development of his master’s the-
sis: “Realimentação Dinâmica de Saídas com Parâmetros Variantes e
Aplicação aos Sistemas Fuzzy Takagi-Sugeno”, UFSC, December 2010,
which launched the basis for developing this doctoral thesis.

Considering the aforementioned context, this thesis seeks to: (i)
demonstrate the importance of considering the regional validity of T-S
fuzzy models for the development of analysis and synthesis tools for
nonlinear control systems; (ii) develop algorithms for stability analy-
sis and control design applied to nonlinear plants represented by T-S
fuzzy models with a reduced number of rules; (iii) consider inherent re-
strictions on the system to be controlled and on the actuators, as well
as the presence of external disturbances; and (iv) execute hardware-in-
the-loop simulations in order to analyze the complexity of the digital
implementation of classical and N-fuzzy controllers.

1.1 RELATED WORKS AND CONTEXTUALIZATION

The term “fuzzy logic” was introduced by Professor Lofti A.
Zadeh at the University of California (ZADEH, 1965) in his definition
of a new set theory. The fundamental principle of this logic is that an
element can belong, with a certain degree, to a set, and with another
degree, to another set. It is possible to see this type of membership
relation in many situations in nature and daily life. This perception
was subsequently related to human behavior in solving complex pro-
blems, allowing the use of experimental knowledge in control design
(MAMDANI, 1974). Since then, the theory of fuzzy logic has been used
in numerous control engineering applications, power systems, telecom-
munications, information processing, pattern recognition, signal proce-
ssing, and economics, among others.

The main motivations for the study of fuzzy theory are the pos-
sibility to process uncertain or qualitative information and the ability
of fuzzy models to serve as a universal approximator (FENG, 2010).
Several different architectures of fuzzy control have been developed,
suitable for different types of applications, such as Mamdani models
(MAMDANI; ASSILIAN, 1975; MAMDANI, 1977). Among these, the use
of T-S models has been prominent in the last decades, due to a higher
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formalism and mathematical rigor of this technique.
The T-S fuzzy systems are based on the use of a set of fuzzy

rules to describe a nonlinear system in terms of local linear (or affine)
time-invariant submodels, blended by membership functions that con-
trol the law of interpolation between the rules (ALATA; DEMIRLI; BUL-

GAK, 1999; FENG, 2010). This is a more general concept in relation
to the linearization of a nonlinear system at a single point of interest,
which probably cannot adequately describe the dynamic behavior of
the system over the entire operating range, as it is not possible to pre-
dict the corresponding domain of attraction. Moreover, the classical
linearization method can be considered as a particular case of the T-S
fuzzy model consisting of only one local submodel. It should also be
emphasized that the T-S fuzzy representation allows the application of
the theoretical and algorithmic background used in robust control and
systems with varying parameters for analysis and design of controllers.
In particular, it can be verified close relations between the control de-
sign and implementation techniques using T-S models with the ones
defined for Linear Parameter Varying (LPV) systems (MOZELLI; PAL-

HARES, 2011b; KLUG; CASTELAN, 2012).
Most of FMB control design results consist of formulating ana-

lysis and synthesis conditions as convex optimization problems (FENG,
2006; GUERRA; KRUSZEWSKI; LAUBER, 2009; WU et al., 2011; YANG;

YANG, 2012; GUERRA et al., 2012a) described in terms of LMIs (BOYD

et al., 1994). A popular method is the use of a common quadratic
Lyapunov function (TANAKA; WANG, 2001) because of the simplicity
in deriving numerical and tractable conditions. However, a common
quadratic Lyapunov function may lead to conservative results, in ge-
neral terms, since a single Lyapunov matrix should be found for all
T-S local submodels. Recently, Fuzzy Lyapunov Functions (FLF) have
been used to obtain less conservative design conditions at the cost of
extra computations, as proposed, for instance, in Guerra & Vermeiren
(2004). Another possibility is the use of piecewise Lyapunov functions,
among others, commonly applied to a control scheme called Parallel
Distributed Compensation (PDC) (FENG, 2010). Alternative struc-
tures have also been used, such as the non-PDC (GUERRA; VERMEIREN,
2004) and the switched-PDC control (DONG; YANG, 2008).

In this context, the number of local submodels required for the
T-S model representation may make the FLF-FMB control design pro-
blem computationally intractable, which is partly related to the mode-
ling error. For example, in the application of an exact description to
complex systems, the excessive number of rules can make it difficult
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to find feasible solutions for the control algorithms, which also compli-
cates the implementation of the obtained controllers. In this case, it is
possible to consider the use of approximate fuzzy models, such as the
method in Teixeira & Zak (1999). However, the closed-loop system com-
posed of the designed fuzzy controller and the original nonlinear system
may not meet the control specifications, causing a loss of performance
or even instability due to the model inaccuracy. In Daruichi (2003),
optimization based techniques for obtaining the fuzzy models with the
minimization of modeling error are presented. Alternative approaches
for rule reduction consist of using uncertain T-S models (TANIGUCHI et

al., 2001). Nevertheless, researchers have made little progress obtaining
fuzzy models with a reduced number of rules and maintaining the exact
description.

Based on the aforementioned issue, and allowing certain nonli-
near terms belonging to bounded sectors to explicitly appear in local
submodels, it is possible to obtain an exact fuzzy description with a
reduced number of rules. From a practical point of view this is per-
fectly reasonable, since a large class of nonlinearities verifies, at least
locally, bounded sector conditions, as polynomial terms with odd de-
gree, some trigonometric functions, saturation, dead-zone, hysteresis,
among others (KHALIL, 2003). A graphic description of a global and a
local bounded sector nonlinearity is shown in Figure 2.

x

ϕ(x)

αx

βx

Global Sector:ϕ(.)∈S[α, β], ∀x∈ℜ

x

ϕ(x)

αx

βx

d

−d

Local Sector:ϕ(.)∈S[α, β] for |x|≤d

Figure 2 – Sector nonlinearities

The fuzzy model composed of nonlinear local submodels, or sim-
ply N-fuzzy model, can be viewed as a linear parameter varying system
with a sector bounded nonlinearity in the feedback loop. Although the
linearity of fuzzy rules is lost, the counterpart may be positive, since all
the mathematical machinery developed to handle sector bounded non-
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linearities can be applied for FMB control design, such as the absolute
stability theory (LIBERZON, 2006).

Notwithstanding the many stability analysis and synthesis con-
ditions that have been extensively developed in the past years, there
are some practical motivated issues that remain open, or that were not
fully solved yet in the context of FMB control systems. Some of them
may compromise the stability analysis and synthesis conditions used
nowadays. Among them, one may first cite the region of operation of
a plant or the regional validity of the model used in the FMB control
system. This inherent local characteristic of T-S modeling techniques
is often not considered in most FMB control design results (see, e.g.,
Chang & Yang (2014), Figueredo et al. (2014), Qiu, Feng & Gao (2013),
Chang (2012), Golabi, Beheshti & Asemani (2012), Su et al. (2012)),
which may lead to poor performance or even instability of the actual
nonlinear closed-loop system (consisting of the original nonlinear plant
and the designed fuzzy controller). The local stability issue in T-S fuzzy
models may also be related to the natural existence of constraints in
the state variables of real systems, due, for example, to safe opera-
tional conditions, physical limitations or some desired level of energy
consumptions, as discussed in Klug et al. (2014); or related to the pre-
sence of time-derivatives of the membership functions in the stability
analysis when dealing with continuous-time systems, as in Guerra et al.
(2012b) and Tognetti, Oliveira & Peres (2013).

Recently, in Tanaka et al. (2012a), fuzzy polynomial models that
allow a global representation of the nonlinear plant are used. However,
this approach is too restrictive as it requires that the nonlinearities
are of the polynomial type or belonging to a global sector, limiting its
application to real systems. Also, aiming for a lower conservatism of the
control algorithms solution, several techniques based on relaxed LMIs
conditions have been proposed, as can be seen in Montagner, Oliveira
& Peres (2010), Tognetti, Oliveira & Peres (2011) and Faria, Silva &
Oliveira (2013), still not considering the issue of model validity, for
instance.

Another practical aspect is related to the actuators nonlineari-
ties, such as saturation, relay, dead-zone and/or hysteresis. For exam-
ple, the saturation is one of the most common nonlinearities in control
and automation engineering practice, and usually derives from physical
limitations imposed by the actuation devices. The presence of satura-
tion may cause undesired effects, such as the appearance of limit cycles
and multiple equilibrium points, potentially causing performance degra-
dation and even instability of the closed-loop system. Thus, considering
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saturation in the analysis and design of control systems is a subject of
theoretical and practical importance (TARBOURIECH et al., 2011a). It
can be observed a graphic description of some typical nonlinearities in
Figure 3.
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Figure 3 – Typical nonlinearities

Another topic of fuzzy systems research corresponds to the con-
sideration of nonlinear plants subject to exogenous disturbance signals
(MONTAGNER; OLIVEIRA; PERES, 2010) and time-delay systems (WU et

al., 2011; HUANG; HE; ZHANG, 2011; TANAKA et al., 2012b). In the first
case, most of the FMB results are concentrated on continuous-time sys-
tems, such as in Wang & Liu (2013), Lee, Joo & Tak (2014) and Wang et
al. (2015). The discrete-time counterpart has been recently addressed
in Klug, Castelan & Coutinho (2013), for the input-to-state (ISS) sta-
bilization problem, and in an enhanced version in Klug, Castelan &
Coutinho (2015a) an input-to-output performance criterion was also
considered. Both articles consider energy bounded disturbances and
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the local behavior of the design conditions. It should be emphasized
that in the presence of amplitude bounded disturbances, the asymp-
totic stability of the origin cannot be guaranteed and, in this case, the
concept of ultimate bounded (UB) stability is considered (i.e., the state
trajectory is guaranteed to converge to a region in the vicinity of the
system origin). This problem is handled in the work Klug, Castelan &
Coutinho (2015).

On the other hand, some recent results have addressed the FMB
dynamic output feedback control problem such as in Zhang, Jiang &
Staroswiecki (2010), Yoneyama (2014) and Nguyen, Dequidt & Dam-
brine (2015), considering the premise variables to be available online
to the controller. This assumption is noticeably restrictive, since the
premise variables vector is, in general, a nonlinear function of measu-
rable and unmeasurable states (ASEMANI; MAJD, 2013). In Tognetti,
Oliveira & Peres (2012) the problem of reduced-order dynamic output
feedback control design for continuous-time systems is considered, using
a line-integral fuzzy Lyapunov function, allowing the membership func-
tions to vary arbitrarily. The controller is obtained in a two-stage LMI
procedure with multi-simplex approach.

Finally, it is also important to highlight that the use of T-S
fuzzy models allows the systematic design with a numerical solution of
nonlinear control systems, whereas other techniques, such as feedback
linearization, sliding-mode control, backstepping, passivity-based con-
trol, among others, usually requires that the equations of the plant are
presented in a particular way and/or are only applied to a specific class
of systems, besides having only analytic solutions. Thus, T-S fuzzy mo-
dels provide an interesting framework for dealing with the fundamental
issues in modern control theory for complex nonlinear systems.

1.2 OBJECTIVES

Overall, a fundamental issue that must be solved in T-S fuzzy
controller design applied to nonlinear systems is concerning the restric-
tions imposed either by the modeling process, related to the regional
validity of the model, or by the inherent physical constraints of actua-
tors. Also, the presence of external signals usually found in real systems
should be considered. In this context, the following specific objectives
can be established:

• Define a theoretical and algorithmic framework to take into ac-
count the regional validity of the T-S fuzzy models in the nonli-
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near control systems design, using the Lyapunov stability theory
for building contractive sets in order to estimate the domain of
attraction of the closed-loop system (compute stability regions);

• Standardize a modeling process that provides a reduced number
of rules and consequently a decrease in the numerical complexity
of the control algorithms, allowing also to handle the dynamic
output feedback control problem for systems with nonlinearities
that may depend on unmeasurable states. This modeling process
is based on the use of T-S fuzzy models with nonlinear local rules,
referred to in this work as N-Fuzzy models;

• Develop conditions to synthesize controllers with guaranteed per-
formance for nonlinear systems represented by N-fuzzy models,
considering their regional validity and providing estimates of the
stability region and admissible disturbance set, such as the ones
bounded in energy and/or bounded in amplitude;

• Perform Hardware-in-the-Loop (HIL) simulations considering the
physical plant virtually emulated using a computer and the con-
trollers embedded in a real programmable platform, in order to
analyze the complexity of digital implementation of classical and
N-fuzzy controllers; and

• Provide an interactive tool for the scientific community of the
related area aiming to assist those users in the nonlinear control
design using fuzzy strategies.

Specifically this thesis considers only nonlinear discrete-time sys-
tems, not covering the discretization process for obtaining it. This im-
portant aspect is a future perspective of this work in order to perform
real implementations of the obtained theoretical results.

1.3 STRUCTURE OF THE THESIS

This document is organized as follows:
In Chapter 2 some fundamental concepts are presented on Takagi-

Sugeno fuzzy systems with nonlinear local rules, as well as the associ-
ated modeling process, discussions concerning the regional validity and
a comparison of the numerical complexity involving classical and N-
fuzzy models. It is important to emphasize the flexibility provided by
N-fuzzy modeling, allowing the control designer to conveniently modify
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the control law in relation to the vector of sector nonlinearities, enabling
for instance the practical implementation of fuzzy dynamic controllers.

Chapters 3, 4 and 5 are composed of the main contributions of
this thesis, the results of which have been published or submitted in
national and international conferences and journals. These chapters
deal with, respectively: i) dynamic output feedback control design for
nonlinear systems with saturating actuators represented by T-S fuzzy
models; ii) the input-to-state stabilization problem with a certain input-
to-output performance for nonlinear systems subject to energy bounded
disturbances; and iii) ultimate bounded stabilization for nonlinear sys-
tems subject to amplitude bounded disturbances using state and dy-
namic output feedback in a special configuration that allows the pre-
sence of unmeasurable nonlinearities. In all cases the inherent local
characteristic of T-S modeling technique is taken into consideration in
the design phase, ensuring that the closed-loop trajectories evolve only
in the T-S domain of validity.

Chapter 6 deals with the development of a user-friendly stability
analysis and control design tool with interactive properties. This allows
the user to, in a few steps, obtain a reasonable controller for a known
nonlinear system that meets some desired closed-loop performance re-
quirements. This chapter also presents practical aspects for implemen-
ting T-S fuzzy controllers, analyzed from hardware-in-the-loop simula-
tions using a Field Programmable Gate Array (FPGA) development
board.

In Chapter 7 some conclusions and recommendations for future
research are discussed. The appendices present some additional infor-
mation which complements the understanding of the preceding chap-
ters.



2 T-S FUZZY MODELS, RULE REDUCTION AND
REGIONAL VALIDITY

The objectives of this chapter are: formalize the mathematical
description of the T-S fuzzy models and present the N-fuzzy modeling
process; compare the numerical complexity of the control algorithms
and the number of rules required in exact modeling for classical and N-
fuzzy approaches; and analyze the modeling error and convexity on the
exterior of the domain of validity. It is important to emphasize that
the classical T-S fuzzy models described in Tanaka & Wang (2001)
and Feng (2010) can be seen as a particular case of the N-fuzzy tech-
nique addressed in this work, which will be explained later. Finally,
it is presented the N-fuzzy models of some nonlinear plants used in
the remainder of this document, whose modeling process are show in
Appendix B.

2.1 T-S FUZZY REPRESENTATION

The T-S fuzzy model, originally proposed by Takagi & Sugeno
(1985), represents a nonlinear dynamic system by means of a fuzzy dy-
namic model. This model consists of a set of local linear (or affine)
submodels that are connected using membership functions. In this sec-
tion, the discrete-time representation with nonlinear local submodels,
also referred to as N-fuzzy, will be used. The modeling procedure and
notation are based in the article Klug & Castelan (2011).

Consider the class of nonlinear systems with state space repre-
sentation affine in the input and disturbance signals, defined by the
following equation

x(k + 1) = f(x(k)) + V (x(k))u(k) + T (x(k))w(k)
y(k) = Cx(k)

(2.1)

where x(k) ∈ X ⊂ ℜnx , u(k) ∈ U ⊂ ℜnu , y(k) ∈ Y ⊂ ℜny and
w(k) ∈ W ⊂ ℜnw are respectively the state, the control input, the
system output and the exogenous disturbance vectors. The functions
f(·) : ℜnx −→ ℜnx , with f(0) = 0, V (·) : ℜnx −→ ℜnx×nu and
T (·) : ℜnx −→ ℜnx×nw are continuous and bounded for all x(k) ∈ X ,
with X being a region belonging to the state space domain containing
the origin which will be defined later in this chapter. Furthermore, in
order to obtain numerically tractable conditions, the output vector y(k)
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is considered to be linear, that is C ∈ ℜny×nx is a constant matrix.
For a given nonlinear system as in (2.1), the N-fuzzy model is

represented by a description of IF-THEN fuzzy rules that express local
dynamics by nonlinear local submodels, having R1, . . . , Rnr

fuzzy rules
defined as follows

Ri
i=1,...,nr

:







IF ν(1)(k) is M i
1, ν(2)(k) is M i

2, . . . , ν(ns)(k) is M i
ns

THEN
x(k + 1) = Aix(k)+Biu(k)+Bwiw(k)+Giϕ(k)

y(k) = Cx(k)
(2.2)

with ν(k) := [ν(1)(k), ν(2)(k), ..., ν(ns)(k)] representing the premise vari-
ables, M i

j , j = 1, . . . , ns, representing the fuzzy sets, and (Ai, Bi, Bwi,
Gi, C) representing the matrices that define the fuzzy local submodels.
The vector ϕ(k) = ϕ(π(k)) ∈ ℜnϕ , with π(k) = Lx(k), ϕ(0) = 0 and
L ∈ ℜnϕ×nx , is a known nonlinear function of x(k) satisfying a (local)
cone sector condition ϕ(·) ∈ S[0, Ω] for all x(k) ∈ X ⊂ ℜnx , i.e., a
matrix 0 < Ω = Ω′ ∈ ℜnϕ×nϕ exists such that

ϕ
′

(k)∆−1[ϕ(k) − ΩLx(k)] ≤ 0, ∀ x(k) ∈ X (2.3)

where ∆ ∈ ℜnϕ×nϕ is any positive diagonal matrix, that is, ∆ ,

diag{δf }, δf > 0, f = 1, . . . , nϕ. Ω is assumed to be a known parame-
ter. From the definition of ∆, if (2.3) is verified then nϕ independent
classical conditions, ϕ′

(f)(k)[ϕ(k) − ΩLx(k)](f) ≤ 0, are also assured
(JUNGERS; CASTELAN, 2011). Thus, ∆ represents a degree of freedom
for the purpose of design and optimization. Notice that if ϕ(k) = 0,
then the rules R1, . . . , Rnr

recover the classical definition of T-S fuzzy
models (TAKAGI; SUGENO, 1985).

Let µi
j(ν(j)(k)) be the “weight” of the fuzzy set M i

j associated

to the premise variable ν(j)(k), and ωi(ν(k)) =
ns
∏

j=1

µi
j(ν(j)(k)). Consi-

dering µi
j(ν(j)(k)) ≥ 0, it follows that

ωi(ν(k)) ≥ 0, ∀ i = 1, ..., nr and
nr
∑

i=1

ωi(ν(k)) > 0.

Furthermore, the normalized weight of each rule, h(i)(k), also
referred to as the membership function of ith local submodel, satisfies:



39

h(i)(k) = h(ν(i)(k)) =
ωi(ν(k))

nr
∑

i=1

ωi(ν(k))

, ∀ i = 1, ..., nr, (2.4)

and it is limited in the unit simplex

Ξ =

{

h ∈ ℜnr ;
nr
∑

i=1

h(i) = 1, h(i) ≥ 0, i = 1, ..., nr

}

.

As will be clarified in the next section, the domain X and the simplex
Ξ are associated by the relation: x(k) ∈ X ⇒ h(i)(k) ∈ Ξ.

Thus, given (x(k), u(k), w(k), ϕ(k), ν(k)), the resulting fuzzy sys-
tem is obtained as the weighted average of the local submodels (LEEK-

WIJCK W. V. AMD KERRE, 1999), also known as the center of gravity
defuzzification method. Therefore, it is obtained

x(k + 1) = A(h(k))x(k)+B(h(k))u(k)+Bw(h(k))w(k)+G(h(k))ϕ(k)
y(k) = Cx(k)

(2.5)
with the structure of the matrices given by

[

A(h(k)) B(h(k)) Bw(h(k)) G(h(k))
]

=
nr
∑

i=1

h(i)(k)
[

Ai Bi Bwi Gi

]

.

Notice that the fuzzy model (2.5) is equivalent to the represen-
tation of a Lur’e type parameter varying system, referred to in this
work as Nonlinear Parameter Varying (NPV) system, with polytopic
uncertainties and cone bounded sector nonlinearities. This fact allows
for stability analysis and control design techniques, originally proposed
for associated parameter varying systems, to be adapted for the use in
nonlinear systems that can be modeled using the N-fuzzy approach.

2.2 CONSTRUCTION OF THE FUZZY MODEL

In order to synthesize a fuzzy controller for a nonlinear plant, it
is first necessary to obtain a T-S fuzzy model of this system. There-
fore, the construction of a fuzzy model represents an important and
basic procedure when using Fuzzy Model Based (FMB) techniques. In
general, there are two approaches for this purpose (TANAKA; WANG,
2001):
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1. identification using input-output data, and

2. derivation from given nonlinear system equations.

The approach using identification is suitable for plants that are
unable or too difficult to be represented by analytical and/or physical
models. On the other hand, when the nonlinear analytical equations
are well-defined, for example in mechanical systems obtained by the
Lagrange method or Newton-Euler method, the second approach is
used. This work focuses on the second case, using the exact modeling.

For the construction of approximate models, as in the method
shown in Teixeira & Zak (1999) (see Appendix A), the control designer
should define operating points in the state space (based on the real
behavior of the nonlinear plant to be analyzed), which will be associ-
ated with local linear submodels. These submodels can be determined
by optimization methods or by Taylor series. However, it should be
emphasized that control systems designed using approximate models
cannot guarantee the performance and stability requirements initially
established when applied to the original nonlinear plant, unless the dis-
crepancies between the model and the plant are possible to be taken
into account in the design process or by further analysis.

2.2.1 Class of Nonlinear Systems

For the demonstration of the fuzzy modeling process, the class
of nonlinear system affine in the input and disturbance signals will be
used, represented in the state space by the equation (2.1). This choice
is due to the realistic fact that the great majority of nonlinear plants
can be represented in this manner.

Consider that the nonlinear vector function f(x(k)) of (2.1) can
be rewritten as1:

f = fa + Gϕ̄ (2.6)

with ϕ̄ = ϕ̄(Lx(k)) belonging to the bounded sector ϕ̄(·) ∈ S[Ω1, Ω2]
(a mesh transformation will later be performed to match with (2.3)) at
least locally in the domain of validity X , to be defined for the model.

From (2.6), the ith element of fa = fa(x(k)) is computed as

fa(i) =
nx
∑

j=1

f̄(i,j)x(j). (2.7)

1For convenience, and from this point on, the dependence of the sample-time or
between variables can be suppressed.
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Applying a similar procedure to V u=V (x(k))u(k), T w=T (x(k))w(k)
and Gϕ̄=G(x(k))ϕ̄(k), the following is obtained

(V u)(i) =
nu
∑

κ=1

v(i,κ)u(κ), (T w)(i) =
nw
∑

l=1

t(i,l)w(l)

and (Gϕ̄)(i) =

nϕ
∑

o=1

g(i,o)ϕ̄(o). (2.8)

Substituting equations (2.6), (2.7) and (2.8) into (2.1), leads to the
following equivalent ith system dynamics for i = 1, ..., nx

x(i)(k + 1) =
nx
∑

j=1

f̄(i,j)x(j) +
nu
∑

κ=1

v(i,κ)u(κ) +
nw
∑

l=1

t(i,l)w(l) +

nϕ
∑

o=1

g(i,o)ϕ̄(o)

(2.9)
In the next section, the nonlinear system (2.9), which is analo-

gous to the system (2.1), will be modeled as a T-S fuzzy system with
nonlinear local submodels in the considered domain of validity X .

2.2.2 T-S Fuzzy Modeling

For the modeling method addressed in this work, the nonlinear
local submodels are obtained using the maximum and minimum values
of the nonlinear functions that compose the system in a specific do-
main of the state space (TANAKA; WANG, 2001; FENG, 2010). In the
literature, this procedure is usually referred to as Sector Nonlinearity
Approach (SNA), although it would be more appropriate to refer it
as Min-Max Approach, for the reasons becoming clear from the con-
text below. Therefore, once the domain X is determined, the following
variables are considered:

aij1 = max
x(k)∈X

{

f̄(i,j)

}

, aij2 = min
x(k)∈X

{

f̄(i,j)

}

biκ1 = max
x(k)∈X

{

v(i,κ)

}

, biκ2 = min
x(k)∈X

{

v(i,κ)

}

cil1 = max
x(k)∈X

{

t(i,l)

}

, cil2 = min
x(k)∈X

{

t(i,l)

}

dio1 = max
x(k)∈X

{

g(i,o)

}

, dio2 = min
x(k)∈X

{

g(i,o)

}

(2.10)

It should be noted that the maximum and minimum values of each
nonlinear function should be computed for the region X (GUERRA;

KRUSZEWSKI; LAUBER, 2009). Then, it can be shown through (2.10)
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that it is possible to represent f̄(i,j), v(i,κ), t(i,l) and g(i,o) as

f̄(i,j) =
2
∑

ℓa=1

αijℓa(x(k))aijℓa v(i,κ) =
2
∑

ℓb=1

βiκℓb(x(k))biκℓb

t(i,l) =
2
∑

ℓc=1

γilℓc(x(k))cilℓc g(i,o) =
2
∑

ℓd=1

δioℓd(x(k))dioℓd

(2.11)

with

αij1 =
f̄(i,j) − aij2

aij1 − aij2
, αij2 =

aij1 − f̄(i,j)

aij1 − aij2
,

βiκ1 =
v(i,κ) − biκ2

biκ1 − biκ2
, βiκ2 =

biκ1 − v(i,κ)

biκ1 − biκ2
,

γil1 =
t(i,l) − cil2

cil1 − cil2
, γil2 =

cij1 − t(i,l)

cil1 − cil2
,

δio1 =
g(i,o) − dio2

dio1 − dio2
and δio2 =

dio1 − g(i,o)

dio1 − bio2
.

(2.12)

Notice that

2
∑

ℓa=1

αijℓa =
2
∑

ℓb=1

βiκℓb =
2
∑

ℓc=1

γilℓc =
2
∑

ℓd=1

δioℓd = 1. (2.13)

It is also observed that ℓa, ℓb, ℓc and ℓd are associated with the ex-
tremum points (maximum and minimum) of nonlinear functions in the
domain X . Substituting (2.11) into (2.9), leads to

x(i)(k + 1)=
nx
∑

j=1

2
∑

ℓa=1

αijℓa(x(k))aijℓax(j)+
nu
∑

κ=1

2
∑

ℓb=1

βiκℓb(x(k))biκℓbu(κ)

+
nw
∑

l=1

2
∑

ℓc=1

γilℓc(x(k))cilℓcw(l)+

nϕ
∑

o=1

2
∑

ℓd=1

δioℓd(x(k))dioℓd ϕ̄(o)

∀ i = 1, ..., nx. Hence, the following state space representation is ob-
tained:

x(k + 1) = Ãx(k) + B̃u(k) + B̃ww(k) + G̃ϕ̄(k) (2.14)



43

with

N =



















2
∑

ℓn=1

η11ℓnn11ℓn · · ·
2
∑

ℓn=1

η1nxℓnn1nxℓn

...
. . .

...
2
∑

ℓn=1

ηnx1ℓnnnx1ℓn · · ·
2
∑

ℓn=1

ηnxnxℓnnnxnxℓn



















where the tuple (N , η, n, ℓn) represents either
(

Ã, α, a, ℓa
)

,
(

B̃, β, b, ℓb
)

,
(

B̃w, γ, c, ℓc
)

or
(

G̃, δ, d, ℓd
)

.
From the summation property in (2.13), the expression (2.14)

can be conveniently rewritten by swapping the summations indices as
follows

x(k + 1) =
2
∑

p11=1

...

2
∑

pnxnx =1

2
∑

q11=1

...

2
∑

qnxnu =1

2
∑

r11=1

...

2
∑

rnxnw =1

2
∑

s11=1

...

2
∑

snxnϕ =1

hp,q,r,s(Āpx + B̄qu + B̄wrw + Ḡsϕ̄)
(2.15)

with

Āp =







a11p11
· · · a1nxp1nx

...
. . .

...
anx1pnx1

· · · anxnxpnxnx






,

B̄q =







b11q11
· · · b1nuq1nu

...
. . .

...
bnx1qnx1

· · · bnxnuqnxnu






,

B̄wr =







c11r11
· · · c1nwr1nw

...
. . .

...
cnx1rnx1

· · · cnxnwrnxnw






,

Ḡs =







d11o11
· · · d1nϕo1nϕ

...
. . .

...
dnx1onx1

· · · dnxnϕonxnϕ






,

and

hp,q,r,s =α11p11
...αnxnxpnxnx

β11q11
...βnxnuqnxnu

γ11r11
...γnxnwqnxnw

δ11r11
...δnxnϕqnxnϕ

.
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Then, aggregating the summations and performing a mesh trans-
formation (see Appendix C) with the nonlinearity ϕ̄ leads to

x(k +1) =
2̟

∑

i=1

h(i)(k) {Aix(k) + Biu(k) + Bwiw(k) + Giϕ(k)}, (2.16)

where h(i)(k) = hp,q,r,s, ̟ = nxnx + nxnu + nxnw + nxnϕ, Ai =
Āi + GiΩ1L, Bi = B̄i, Bwi = B̄wi, Gi = Ḡi e ϕ = ϕ̄ − Ω1Lx, with
ϕ(.) ∈ S[0 Ω].

The equation (2.16) represents the T-S fuzzy model with nonli-
near local rules described in (2.5), where Ai, Bi, Bwi and Gi are depen-
dent on the extremum values aijℓa , biκℓb , cilℓc and dioℓd of the nonline-
arities of the system. The membership functions h(i)(k) are dependent
on the functions αijℓa(x(k)), βiκℓb(x(k)), γilℓc(x(k)) and δioℓd(x(k)) de-
fined in (2.12), and correspond to time-varying parameters for a NPV
polytopic system.

Based on the aforementioned N-fuzzy modeling technique, and
in other methods found in literature, an important issue usually not
considered by researchers is that to obtain numerically tractable solu-
tions for the stability analysis and control design of nonlinear systems,
the available T-S fuzzy modeling techniques can only locally guaran-
tee the stability properties of the original nonlinear system. Notice
when deriving a T-S fuzzy model that a normalizing step is used in the
defuzzification process, which requires that the premise variables are
bounded in some chosen compact set, i.e. the positiveness of the func-
tions in (2.12), and consequently of the membership functions h(i)(k),
it is only guaranteed if x(k) ∈ X .

In light of the above, there exists a bounded region X of state
space containing the origin such that x(k) ∈ X ⇒ h(i)(k) ∈ Ξ. Hence,
when applying convex methods to solve fuzzy based stability conditions
on the Ξ space, it is necessary to take into account that the stability
conditions hold only if the state trajectory of the original nonlinear
system does not leave X . From this reasoning, we refer to the region
X as the T-S domain of validity. In this work, the domain X will be
defined by means of the following polyhedral set

X = {x(k) ∈ ℜnx : |Nx(k)| � φ}, (2.17)

where φ ∈ ℜnφ and N ∈ ℜnφ×nx are given constants. Also, φ represents
the bounds of the associated states, and nφ ≤ nx represents the number
of constraints characterizing the region X . For example, considering a
generic nonlinear system with x(k) ∈ ℜ3, and the limits

∣

∣x(1)(k)
∣

∣ ≤ 2
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and
∣

∣x(2)(k)
∣

∣ ≤ 3, with the free state x(3)(k), the domain X in (2.17)
can be characterized by

N =

[

1 0 0
0 1 0

]

and φ =

[

2
3

]

.

This domain of validity should be taken into account in any
control design or stability analysis that assumes the description (2.16)
instead of (2.1) and is based on convex properties of the N-fuzzy model.
Specifically, loss of performance or even instability may occur when
the state trajectory evolves outside the domain of validity of the model
(2.16).

Remark 2.1 For the classical T-S fuzzy modeling described in Tanaka
& Wang (2001), the vector of sector nonlinearities ϕ̄ does not explicitly
appear in the model equation (2.16). Otherwise, these nonlinearities
should be handled and indirectly included in the system state matrix,
as shown in the sequel. Let the unidimensional discrete-time nonlinear
system

x(k + 1) = fa(x(k)) + 0.7ϕ̄(k) + u(k) + 0.2w(k),

with ϕ̄ = ϕ̄(Lx) = sin(x), L = 1, and fa = x2 = f̄x ⇒ f̄ = x.
Considering that the trajectories are restricted to the state space domain
defined by |x| ≤ π/2, it is possible to rewrite f̄ , following the steps

(2.10), (2.11) and (2.12), by f̄ =
2
∑

ℓa=1

αℓaaℓa , with a1 = π/2, a2 =

−π/2, α1 =
x − a2

a1 − a2
and α2 =

a1 − x

a1 − a2
. It can also be observed that

the nonlinearity ϕ̄ is bounded in the sector ϕ̄ ∈ S[Ω1, Ω2], with Ω1 = 2/π
and Ω2 = 1. Thus, the T-S fuzzy model with nonlinear local rules is
given by

x(k + 1) =
2
∑

ℓa=1

αℓa(k) {aℓax(k) + u(k) + 0.2w(k) + 0.7ϕ̄(k)}. (2.18)

with the membership functions h(i)(k) = α(i)(k), i = 1, 2, depicted in
Figure 4.

In another way, it is possible to rewrite the nonlinearity ϕ̄, in
the considered state space domain, as

ϕ̄ = sin(x) =

(

2
∑

ℓe=1

ǫℓeΩℓe

)

x, (2.19)
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Figure 4 – Membership functions h(i)(k) for N-fuzzy model

where ǫℓe = ǫℓe(x(k)), ℓe = 1, 2, are any functions that satisfy (2.19)
and respect the properties ǫ1 +ǫ2 = 1 and ǫℓe ≥ 0, ℓe = 1, 2, ∀ x(k) ∈ X .
One possibility is to choose

ǫ1 =







sin(x) − Ω1x

x(Ω2 − Ω1)
, x 6= 0

1, x = 0
and ǫ2 =







Ω2x − sin(x)

x(Ω2 − Ω1)
, x 6= 0

0, x = 0

Hence, it has the following classical T-S fuzzy model with linear local
rules

x(k + 1) =
2
∑

ℓa=1

2
∑

ℓe=1

αℓa(k)ǫℓe(k) {(aℓa +0.7Ωℓe)x(k)+u(k)+0.2w(k)}

=
4
∑

i=1

h(i)(k) {Aix(k)+u(k)+0.2w(k)}

(2.20)
with Ai = aℓa +0.7Ωℓe and h(i)(k) = αℓa(k)ǫℓe(k), for i = ℓe +2(ℓa −1)
and ℓa, ℓe = 1, 2. It is worth noting that the term Ωℓe

in (2.20), related
to the sector nonlinearity, appears attached to the system state matrix.
Furthermore, the treatment of ϕ̄ implies an additional summation, and
consequently an increase in the number of local submodels. This factor
will be further explored in the next subsection.

In Figure 5 the membership functions h(i)(k) for the model (2.20)
are depicted. As in the Figure 4, the reader can notice that the mem-
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bership functions h(i)(k) do not belong to the simplex Ξ outside the T-S
domain of validity (|x| ≤ π/2).
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Figure 5 – Membership functions h(i)(k) for classical model

2.2.3 Comparison of the Number of Rules

It is important to highlight that a nonlinearity for each position
of the state, control input, and disturbance matrices, as represented in
the generalized model (2.15), does not necessarily exist. In this case,
linear or null terms are not considered in the summations, consequently
reducing the number of submodels in the fuzzy representation. In ge-
neral, for the classical modeling of Tanaka & Wang (2001), there is a
ratio of 2ns rules for the exact representation (TANIGUCHI et al., 2001),
where ns is the number of premise variables associated to the number
of nonlinearities to be handled.

From another point of view, the definition of the vector ϕ eli-
minates functions that would also be represented by summations, con-
tributing to a reduction in the number of local submodels. In this case
it has a ratio of 2ns−nϕ rules for the exact representation of the model.
Therefore, using the N-fuzzy approach can be important to reduce the
numerical complexity, making easier the feasibility of the control algo-
rithms and their implementation.

In Figure 6, it is shown a graphic comparison between the num-
ber of rules for classical T-S fuzzy models (nϕ = 0), having linear
submodels, and the N-fuzzy model in two cases (nϕ = 1 and nϕ = 2).
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Figure 6 – Comparison of the number of rules

Notice that the larger is the size of the vector ϕ, the greater is
the reduction of rules, after all 2ns−nϕ = 2ns/2nϕ . This relation allows
to check a division factor of 2nϕ in relation to the classical T-S fuzzy
model.

2.3 MODELING ERROR ANALYSIS AND REGIONAL VALIDITY

An important issue when dealing with the T-S fuzzy models con-
sidered in the present work is that the convexity can only be guaranteed
in a specific region of the state space, referred to as the domain of va-
lidity X . The exception is for systems whose sector nonlinearities can
be globally encompassed and/or a global maximum/minimum can be
found. Otherwise, it is necessary to assign a confined region to com-
pute the extremum points and/or to find a local bounded sector for
the nonlinearities of the system. However, provided that the stability
conditions are properly handled, this may not be a serious problem,
because most real systems already have physical limitations which na-
turally constraint the excursion of the states.

Nonetheless, the inherent local characteristic of T-S modeling
techniques is often not considered in most FMB control design results,
as can be observed in Tognetti & Oliveira (2009), Andrea et al. (2008),
Yang & Yang (2012), Mozelli & Palhares (2011a) and in references
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therein. Hence, the synthesized control laws in these references based
on convex methods may lead to trajectories of the controlled nonli-
near system evolving outside the domain of validity, thus representing
a source of performance degradation or even instability of the corres-
ponding closed-loop system.

As previously discussed, the loss of model convexity is associ-
ated with the positiveness of the membership functions, which is only
ensured for the domain X . A common strategy employed to avoid
h(k) /∈ Ξ, ∀ x(k) /∈ X is to partition the membership functions h(i)(k)
in order to saturate them, i.e. h(i)(k) ∈ [0, 1]. In other words, if the
value of h(i)(k) is greater than 1, it is set (“clipped”) to 1, if the value
of h(i)(k) is lower than 0, it is set (“clipped”) to 0. This strategy,
despite its success when applied to the T-S fuzzy model, introduces
modeling errors that might result in similar issues observed for the loss
of model convexity case, when applied to the original nonlinear system.
To sum up, in practical applications either the membership function
are clipped, in which the model convexity is preserved at the cost of
modeling errors, or not clipped, in which the model convexity is lost but
the fuzzy model is exact. The following examples aim to demonstrate
the involved problematic.

Example 2.2 (Modeling Error) Let the nonlinear function f̄(x) =
x sin2(x), with x ∈ ℜ. It is desired to obtain an exact T-S fuzzy model
of the function using the procedures described in the subsection 2.2.2.
For this purpose, the domain of validity is considered (for example due
to physical limitations) as X = {x ∈ ℜ : |x| ≤ π/3}. Computing the
maximum and minimum values of the nonlinear function f̄(x) for X
leads to

a1 = max
x∈X

{

f̄(x)
}

= 0.7854, and a2 = min
x∈X

{

f̄(x)
}

= −0.7854.

Thus, it is possible to rewrite f̄(x), using (2.11) and (2.12), as the
following equivalent T-S fuzzy model

f̄(x) =
2
∑

ℓa=1

αℓa(f̄(x))aℓa , ∀ x ∈ X , (2.21)

with

α1(f̄(x)) =















f̄(x) − a2

a1 − a2
, a2 ≤ f̄(x) ≤ a1

1, f̄(x) > a1

0, f̄(x) < a2

and
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α2(f̄(x)) =















a1 − f̄(x)

a1 − a2
, a2 ≤ f̄(x) ≤ a1

0, f̄(x) > a1

1, f̄(x) < a2

. (2.22)

The membership functions are also depicted in Figure 7.
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Figure 7 – Membership functions (MFs): α1(x) and α2(x)

It should be emphasized that X is represented by vertical dashed
lines in red, where |x| ≤ π/3 ⇒ a2 ≤ f̄(x) ≤ a1. In this region the

properties

2
∑

ℓa=1

αℓa = 1 and αℓa ≥ 0, ℓa = 1, 2, by definition, are always

verified. Otherwise, outside this domain there is no such guarantee, and
positiveness is ensured by clipping the membership functions between 0
and 1, as shown in (2.22).

In Figures 8 and 9, the graph of the nonlinear function f̄(x) and
its corresponding T-S fuzzy model, described in equation (2.21) are ob-
served, respectively. The existing modeling error is shown in Figure 10.

Notice that there is no modeling error within the domain of va-
lidity X , and thus the dynamic of the T-S fuzzy model is equivalent
to the nonlinear function f̄(x) in this region. However, for x /∈ X ,
the fuzzy model can no longer represent the original function, having a
discrepancy between the function and its fuzzy representation.

In light of the above example, modeling errors are introduced
when considering the membership functions constrained between [0, 1].
In this case, and regarding a fuzzy model representing a nonlinear sys-
tem and a fuzzy controller designed to satisfy stability and performance
requirements, if the state vector achieves regions of the state space
where the T-S model no longer accurately represents the dynamics of



51

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

x(k)

f̄
(x

)

Figure 8 – Nonlinear function

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

x(k)

∑

2 ℓ
a

=
1

α
ℓ

a
a

ℓ
a

Figure 9 – T-S fuzzy representation

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

x(k)

E
rr

or

Figure 10 – Modeling error when MFs are clipped for x(k) /∈ X



52

the original plant, the desired stability and performance may not be
guaranteed for the original system.

In the following, an illustrative example aims to demonstrate the
problems that may occur in practice when the inherent local characte-
ristic of T-S modeling techniques are not considered in control design,
either by modeling error introduced when restricting the membership
functions, or because of the loss of model convexity outside the domain
X .

Example 2.3 (Local Stability) For simplicity, consider the follo-
wing unidimensional nonlinear discrete-time system without control sa-
turation constraints (KLUG et al., 2014)

x(k+1) = x3(k)+sin(x(k))+(0.2+x2(k))u(k) , y(k) = x(k) (2.23)

and assume as premise variables ν(1)(k) = y2(k) and ν(2)(k) = sin(y(k)).
By considering the domain of validity (2.17), with N = 1 and φ =
5π/12 (or simply |x(k)| ≤ 5π/12 ), and using the techniques described
in Remark 2.1 (FENG, 2010), a classical fuzzy T-S model based on four
linear local submodels is obtained, i.e. with Gi = 0 ∀ i = 1, .., 4:

A1 = [ 2.7135 ] ; A2 = [ 2.4514 ] ; , A3 = [ 1 ] ; , A4 = [ 0.7379 ] ;

B1 = [ 1.9135 ] ; B2 = [ 1.9135 ] ; B3 = [ 0.2000 ] ; B4 = [ 0.2000 ] .
(2.24)

The respective four membership functions are depicted in Fig-
ure 11 for the considered domain of validity where the convexity pro-
perty of set (3.2) holds true.
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.
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These functions are the binary product between functions M̂ i
j ,

j = {1, 2} and i = {1, 2}, defined as:

M̂1
1 =

x2

1.7135
, M̂1

2 =
−x2

1.7135
, and

M̂2
1=







sin(x) − 0.7379x

x(0.2621)
, x 6= 0

1, x = 0
, M̂2

2=







x − sin(x)

x(0.2621)
, x 6= 0

0, x = 0
.

Figure 12(a) depicts the estimated basin of attraction obtained
by simulations of the two dimensional closed-loop system composed of
the nonlinear system (2.23) and a dynamic output feedback fuzzy con-
troller (adapted from Theorem 8.10 in (FENG, 2010), with conditions
described in Appendix D) computed to globally stabilize the T-S model
(2.24). The dashed lines in this figure indicate the boundary of the
domain of validity of the fuzzy T-S model. The points marked with ×
correspond to unstable initial conditions, that is, points not belonging to
the basin of attraction. The points marked with ◦ belong to the conside-
red basin of attraction but part of the corresponding trajectories evolve
outside the domain of validity of the T-S fuzzy model. The other un-
marked points complete the basin of attraction for the considered range
of closed-loop initial conditions. Figure 12(b) depicts state trajectories
corresponding to initial conditions chosen in the three mentioned re-
gions of Figure 12(a), ξ(0) = [0.75 0] symbolized by �, and ξ(0) = [1 0]
symbolized by ◦, being stable conditions, and ξ(0) = [−1.2 0] symbolized
by ×, an unstable condition.
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Figure 12 – Regions and trajectories for motivating example
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It is remarkable, as shown in Figures 12, that a compensator that
in theory globally stabilizes the fuzzy T-S closed-loop system may yield
unstable trajectories even though the initial conditions are inside the
domain of validity when applied in the original nonlinear system (2.23).
On the other hand, the use of some adequate techniques taking into
account the domain of validity issue prevents unstable initial conditions
inside a sub-region of X , as will be seen in the following chapters.

In this sense, the local stabilization of nonlinear systems using
T-S fuzzy models is an important contribution of this work, in which
efforts were devoted to estimate a safe domain of attraction, i.e. a
region of admissible initial conditions that asymptotically converge to
the origin, for the closed-loop system.

2.4 CONCLUDING REMARKS

In this chapter some general concepts of T-S fuzzy systems the-
ory were presented. A generalized process of modeling with the use of
nonlinear local submodels, referred to as N-fuzzy modeling, was descri-
bed. The objective is to obtain an exact representation of the nonlinear
plant with the least possible number of rules, reducing the numerical
complexity and consequently making easier the feasibility of the sub-
sequently developed control algorithms and their practical implemen-
tation. A comparative study of the number of rules for classical and
N-fuzzy models was also performed. The important issue of regional
validity was discussed, generally disregarded by researchers in this area.
At last, examples of nonlinear systems modeled by T-S fuzzy models are
detailed in Appendix B, and an analysis of the numerical complexity
of control algorithms is presented in Appendix D .



3 DYNAMIC OUTPUT FEEDBACK CONTROL
DESIGN

In this chapter a control design technique for discrete-time nonli-
near systems that can be represented by the N-Fuzzy model described
in Chapter 2 is presented. The control law considered is a dynamic
output feedback with some particularities which will be described later.
Basically, the objective is to propose a systematic method for obtaining
the matrices of the controller, dealing with some key practical issues
such as the saturation of the actuators and the regional validity of the
T-S fuzzy model.

The proposed dynamic compensator is full-order and dependent
on the fuzzy membership functions that are assumed to be available
online to the controller. Additionally, anti-windup gains are added as
an attempt to mitigate the undesired effects of saturation, and a per-
formance index based on the λ-contractivity of the level set, associated
with the Lyapunov function, is used in order to ensure a certain rate
of temporal convergence of the closed-loop system trajectories. The
results presented here are enhanced versions of the works Klug & Cas-
telan (2012) and Klug et al. (2014).

The numerical results described in the present chapter and in
the next ones, were obtained using the following computational tools:

1. Yalmip (LöFBERG, 2004): an interface for the mathematical de-
scription of the considered LMI-optimization problem and man-
agement of the SDP-solver to be used;

2. SeDuMi (STURM, 1999) and SDPT3 (TOH; TUTUNCU; TODD, 2004):
SDP-solvers which are used to search for feasible solutions of the
LMI-based control algorithms;

3. Simulink: a graphical programming environment for modeling,
simulating and analyzing multidomain dynamic systems.

3.1 PROBLEM FORMULATION

Consider the class of undisturbed nonlinear systems that can be
modeled by the process demonstrated in section 2.2, described using
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the defuzzification method by center of gravity as follows:

x(k + 1) = A(h(k))x(k) + B(h(k))sat(u(k)) + G(h(k))ϕ(k)
y(k) = Cx(k)

(3.1)
where x(k) ∈ X ⊂ ℜnx , u(k) ∈ U ⊂ ℜnu and y(k) ∈ Y ⊂ ℜny are
respectively the state, the control input and the system output vectors.
h(k) ⊂ ℜnr is a vector of time-varying membership functions, and
limited, ∀ x(k) ∈ X , in the unit simplex

Ξ =

{

h ∈ ℜnr ;
nr
∑

i=1

h(i) = 1, h(i) ≥ 0, i = 1, ..., nr

}

. (3.2)

The function sat(.) : ℜnu → ℜnu represents the saturation of the con-
trol inputs, defined by the standard decentralized saturation function

sat(u(ℓ)(k)) = sign(u(ℓ)(k))min(ρ(ℓ),
∣

∣u(ℓ)(k)
∣

∣), ∀ ℓ = 1, ..., nu (3.3)

where ρ(ℓ) > 0 denotes the symmetric amplitude bound relative to the
ithcontrol input.

Complementing the fuzzy model description (3.1), the vector of
sector nonlinearities ϕ(k) = ϕ(π(k)) ∈ ℜnϕ , with π(k) = L̄y(k) =
Lx(k), L = L̄C ∈ ℜnϕ×nx , and L̄ with appropriate dimensions, verifies
(at least locally) the sector condition (2.3). This definition is required
for control purposes.

The matrix structure is given by

[

A(h(k)) B(h(k)) G(h(k))
]

=
nr
∑

i=1

h(i)(k)
[

Ai Bi Gi

]

.

(3.4)
Once the premise variables vector ν(k) is assumed to be a func-

tion of the measurable states, i.e., ν(k) = ν(y(k)), the vector of mem-
bership functions can be reconstituted in real-time from these signals.
In other words, h(k) = h(ν(y(k))) = h(y(k)). This assumption is nece-
ssary to implement any output feedback controller based on the PDC
strategy, in which the membership functions are shared between the
fuzzy model and controller. Notice that many works in literature do
not clarify this important property, even using examples that can not
be implemented in practice.

In light of the above, the following full-order nonlinear fuzzy
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(N-fuzzy) dynamical output feedback compensator is investigated:

xc(k + 1) = Ac(h(k))xc(k) + Bc(h(k))y(k) + Gc(h(k))ϕ(Lx(k))
−Ec(h(k))Ψ(u(k))

u(k) = Cc(h(k))xc(k) + Dc(h(k))y(k) + Fc(h(k))ϕ(Lx(k))
(3.5)

where xc(k) ∈ ℜnx×nx and Ψ(.) : ℜnu → ℜnu is the dead-zone nonline-
arity given by:

Ψ(u(k)) = u(k) − sat(u(k)), (3.6)

and the controller matrices are as follows
[

Ac (h(k)) Bc (h(k)) Gc (h(k))
]

=
nr
∑

i=1

nr
∑

j=i

(1 + ςij)h(i)(k)h(j)(k)

[

Acij

2

Bcij

2

Gcij

2

]

(3.7)
[

Cc (h(k)) Dc (h(k)) Fc (h(k)) Ec (h(k))
]

=
nr
∑

i=1

h(i)(k)
[

Cci Dci Fci Eci

]

,

with ςij a binary variable such that

ςij =

{

1 if i 6= j,
0 otherwise.

(3.8)

As assumed in Arcak, Larsen & Kokotovic (2003), the feedback con-
troller (3.5) requires either the knowledge of ϕ(·) or its availability as
a signal whenever Gc(h(k)) 6= 0 or Fc(h(k)) 6= 0. In addition, Ec(h(k))
is a fuzzy anti-windup gain matrix that helps to mitigate the effects of
the saturation. It is worthwhile to say that such anti-windup gain is
usually addressed as a constant and the present proposal may improve
the closed-loop behavior, once it may contains the time-invariant gain,
E(h(k)) = Ec, as a special case.

Considering the augmented state vector ξ(k) = [x
′

(k) x
′

c(k)]
′ ∈

ℜ2nx , the closed-loop system can be described by:

ξ(k + 1) = A(h(k))ξ(k) + G(h(k))ϕ(Lξ(k))

−B(h(k))Ψ
(

K(h(k))ξ(k) + Fc(h(k))ϕ(π(k))
) (3.9)

with

A(h(k)) =

[

A(h(k)) + B(h(k))Dc(h(k))C B(h(k))Cc(h(k))
Bc(h(k))C Ac(h(k))

]

,
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B(h(k)) =

[

B(h(k))
Ec(h(k))

]

, G(h(k)) =

[

G(h(k)) + B(h(k))Fc(h(k))
Gc(h(k))

]

,

K(h(k)) =
[

Dc(h(k))C Cc(h(k))
]

, and L =
[

L 0
]

.

In view to the regional validity defined by (2.17), the T-S domain
of validity is redefined in terms of the augmented space:

X {a} = {ξ(k) ∈ ℜ2nx : |Nξ(k)| � φ}, (3.10)

where N = [ N 0nφ×nx
] ∈ ℜnφ×2nx .

Thus, the problem of designing a controller (3.5) such that the
closed-loop system remains stable requires handling the validity domain
(3.10) besides a region of initial conditions ξ(0) such that the allowed
amplitudes of control signals are sufficient to assure the origin of (2.1)
as an asymptotically stable equilibrium point. Such region of initial
conditions is noted here as S0 and consists of a subset of the domain of
attraction of the resulting nonlinear closed-loop system (2.1) (KHALIL,
2003, Sec. 8.2). As discussed in Tarbouriech et al. (2008), the basin
of attraction can be defined as the set of all ξ(k) such that for all ξ(0)
belonging to such set the corresponding system’s trajectory converges
asymptotically to the origin. It is noteworthy that an exact characteri-
zation of such set is in general not possible. This problem is formalized
in the sequel:

Problem 3.1 Determine the parameters of the controller (3.5), and a
region S0 ⊆ ℜ2nx , as large as possible, such that the origin of the closed-
loop system (3.9) is asymptotically stable and for any initial condition
ξ(0) ∈ S0, the corresponding trajectories of the closed-loop system re-
main in X {a}.

Remark 3.2 The differentiated structure (3.7), proposed to matrices
Ac(·), Bc(·) and Gc(·), is required for obtaining the gains of the con-
troller (3.5) from stabilizing conditions that will be proposed in the form
of LMIs. Adopting a simplified structure, in this case, would invalidate
this procedure, but could be used for the design of a controller with
Cc(h(k)) = Cc, Dc(h(k)) = Dc and Fc(h(k)) = Fc.

Remark 3.3 An alternative to the structure (3.7) was used in the
works Klug & Castelan (2012) and Klug et al. (2014). This structure
is based in a split of summations, generically represented by matrix J(.)
as

J (h(k)) =
nr
∑

i=1

h(i)(k)2Ji +
nr−1
∑

i=1

nr
∑

j=i+1

h(i)(k)h(j)(k)Jij
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However, comparing the above representation with (3.7), it can be con-
cluded that there exists an equivalence between the two structures in
respect to the number of controller matrices and to the numerical com-
plexity of the subsequent control algorithms. Thus, for convenience, it
was used (3.7), since this provides a more compact representation.

It should be emphasized that the closed-loop matrices in (3.9)
can be rewritten, by using the special structure (3.7) of the fuzzy com-
pensator and some summation properties, as

[

A (hk) G (hk)
]

=
nr
∑

i=1

nr
∑

j=i

(1 + ςij)h(i)(k)h(j)(k)

[

Aij

2

Gij

2

]

with

Aij =

[

Ai + Aj + (BiDcj + BjDci)C BiCcj + BjCci

BcijC Acij

]

and

Gij =

[

Gi + Gj + BiFcj + BjFci

Gcij

]

.

3.2 PRELIMINARIES AND STABILITY ANALYSIS

Consider a fuzzy Lyapunov function (FLF) depending on the
membership function h(k) ∈ Ξ, with Ξ given in (3.2), such that

V (ξ(k), h(k)) : ℜ2nx × Ξ → ℜ+, V (0, h(k)) = 0.

The level set associated with V (ξ(k), h(k)) is given by EV , {ξ(k) ∈
ℜ2nx ; V (ξ(k), h(k)) ≤ 1, h(k) ∈ Ξ}. Based on the definition of con-
tractive sets provided in Khalil (2003), the λ-contractivity index given
in what follows is used to improve the performance of the closed-loop
system (3.9), being considered at the design stage of the fuzzy compen-
sator (3.5):

Definition 3.4 Consider a real scalar λ ∈ (0, 1]. The level set EV is
λ-contractive, with respect to the trajectories solutions of system (3.9),
if

∆Vλ(ξ(k), h(k)) , V (ξ(k + 1), h(k + 1)) − λV (ξ(k), h(k)) < 0,
∀ ξ(k) ∈ EV , ∀ h(k) ∈ Ξ.

(3.11)
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From (3.11), it follows that for all k > 0 there exists 0 < λk < λ
such that

V (ξ(k), h(k)) = λkV (ξ(k − 1), h(k − 1)). (3.12)

Considering the definitions of EV and (3.12), k̄ > 0 being any discrete-

time instant and defining λ̄
△
= max

1≤k≤k̄
λk, it follows that

V (ξ(k̄), h(k̄)) =





k̄
∏

k=1

λk



V (ξ(0), h(0)) ≤ λ̄k̄,

for any initial condition ξ(0) ∈ EV and for any sequence h(k), k =
0, 1, . . . , k̄, with h(k) ∈ Ξ. Thus, by letting k → ∞, because λ̄ < 1 it
follows from Definition 3.4 that any closed-loop trajectory of system
(3.9) starting from EV , asymptotically converges to the origin of ℜ2nx

with a speed of convergence associated with the contractivity coefficient
λ. Furthermore, it can be deduced that the smaller λ ∈ (0, 1] is, the
faster is the asymptotic convergence to the origin.

The following FLF candidate is considered:

V (ξ(k), h(k)) = ξ
′

(k)Q−1(h(k))ξ(k) (3.13)

where Q(h(k)) =
nr
∑

i=1

h(i)(k)Qi, 0 < Qi = Q′
i ∈ ℜ2nx×2nx . The level set

obtained from (3.13) is given by the intersection of ellipsoidal sets (HU;

Z., 2003; JUNGERS; CASTELAN, 2011):

EV ,
⋂

i∈{1,...nr}

E(Q−1
i ), with E(Q−1

i )=
{

ξ(k) ∈ ℜ2nx ; ξ′(k)Q−1
i ξ(k) ≤ 1

}

.

(3.14)
The desired asymptotic stability properties for the closed-loop

system (3.9) is guaranteed by first assuring that the λ-contractive set
relative to the system (3.1), EV , is inside the domain X {a} given in
(3.10 ). Recall that X {a} is the set where, by hypothesis, the nonlinear
closed-loop dynamical behaviour is well represented (convexly) by the
fuzzy closed-loop system (3.9).

Lemma 3.5 Consider matrix N in (3.10) and the respective vector
φ. If there exist symmetric positive definite matrices Qi ∈ ℜ2nx×2nx ,
i = 1, . . . , nr, and a matrix U ∈ ℜ2nx×2nx such that

[

−Qi + U′ + U U′N′
{ℓ}

⋆ φ2
{ℓ}

]

≥ 0 ∀ i = 1, ..., nr and ℓ = 1, ..., nφ,

(3.15)
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then EV ⊆ E(Q−1
i ) ⊂ X {a}, ∀ i = 1, ..., nr.

Proof Note that owing to the positivity of Qi, U1 is regular whene-
ver (3.15) is verified. Now, consider (3.15) multiplied by h(i)(k) and
summed up on i = 1, . . . , nr. By using the fact

(U′ − Q(h(k)))Q−1(h(k))(U − Q(h(k))) ≥ 0,

the block (1, 1) can be overbounded by U′Q−1(h(k))U. The obtained

inequality can be pre-multiplied by diag{
(

U−1
)

′

, Ir} and post-multiplied
by its transpose, and applying Schur’s Complement (BOYD et al., 1994)
it yields ∀ ℓ = 1, ..., nφ:

[

Q−1(h(k)) N′
{ℓ}

⋆ φ2
{ℓ}

]

≥0 ⇔ξ′(k)N′
{ℓ}

1

φ2
{ℓ}

N{ℓ}ξ(k) ≤ ξ′(k)Q−1(h(k))ξ(k).

This implies that E(Q−1(h(k))) ⊆ X {a} (see, for instance, Boyd et al.
(1994), Jungers & Castelan (2011)).

As a consequence of Lemma 3.5, if EV ,
⋂

i

{

E(Q−1
i )
}

is λ-
contractive, then every trajectory initiated in it remains in X {a} and
asymptotically converges to the origin.

Next, to consider that the control inputs may saturate, one can
use the modified sector condition associated with the dead-zone nonli-
nearity Ψ(u(k)) (Gomes da Silva Jr.; TARBOURIECH, 2005). This modi-
fied sector condition is, in general, locally verified in a polyhedral set
S(ρ, h(k)), that for the present control fuzzy problem can be defined
by:

S(ρ, h(k)) =
{

ξ(k) ∈ ℜ2nx and

| (K(h(k)) − Y(h(k)) ξ(k)| ≤ ρ, ∀ h(k) ∈ Ξ} , (3.16)

with

K(h(k)) =
nr
∑

i=1

h(i)(k)Ki =
nr
∑

i=1

h(i)(k)
[

DciC Cci

]

and

Y(h(k)) =
nr
∑

i=1

h(i)(k)Yi.

(3.17)

1Matrix U is chosen constant to avoid practical implementation issues.
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Lemma 3.6 Consider matrix Ki given in (3.17) and the vector ρ with
the symmetric amplitude bounds relative to the control input. If there
exist symmetric positive definite matrices Qi ∈ ℜ2nx×2nx and Hi ∈
ℜnu×2nx , i = 1, . . . , nr, and matrix U ∈ ℜ2nx×2nx such that

[

−Qi + U′ + U U′K′
i{ℓ} − H′

i{ℓ}

⋆ ρ2
{ℓ}

]

≥ 0,

∀i = 1, . . . , nr and ℓ = 1, . . . , nu.

(3.18)

then, by setting Yi = HiU
−1, one has the inclusion EV ⊆ S(ρ, h(k)).

Furthermore, the following modified sector condition holds true for all
ξ(k) ∈ E

(

Q−1(h(k))
)

:

Ψ′(u(k))S−1 (Ψ(u(k)) − Y(h(k))ξ(k) − Fc(h(k))ϕ(π(k))) ≤ 0, (3.19)

for any diagonal positive definite matrix S ∈ ℜnu×nu .

Proof The inclusion E(Q−1(h(k))) ⊆ S(ρ, h(k)) is similar to the in-
clusion considered in Lemma 3.5 and can be proven likewise. Thus, by
following similar steps as in the proof of Lemma 1 in Gomes da Silva
Jr. & Tarbouriech (2005), it can be shown that the sector condition
(3.19) holds true for all ξ(k) ∈ S(ρ, h(k)). Hence, it also holds true for
all ξ(k) ∈ E

(

Q−1(h(k))
)

⊆ S(ρ, h(k)).

Note that the sector condition (3.19) can be viewed as an ex-
tension of the modified sector condition used in Castelan, Tarbouriech
& Queinnec (2008), allowing the dependency on the membership func-
tion h(k) to be taken into account. In the sequel are presented the
results concerning the local asymptotic (LA) stability analysis of the
closed-loop system (3.9).

Lemma 3.7 (LA-Stability Analysis) Let Acij, Bcij, Gcij, Eci, Cci,
Dci, and Fci be given matrices that form structure (3.7) of compensator
(3.5) and consider a given real scalar λ ∈ (0, 1]. If there exist symme-
tric positive definite matrices Qi ∈ ℜ2nx×2nx , positive definite diagonal
matrices ∆ ∈ ℜnϕ×nϕ and S ∈ ℜnu×nu , and matrices U ∈ ℜ2nx×2nx ,
Hi ∈ ℜnu×2nx verifying inequalities (3.15), (3.18), and
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−Qq

Aij

2
U

Gij

2
∆ −

(

Bi + Bj

2

)

S

⋆ λ−1

(

Qi + Qj

2

)

− U − U′ U′L′Ω
H′

i + H′
j

2

⋆ ⋆ −2∆ ∆

(

F ′
ci + F ′

cj

2

)

⋆ ⋆ ⋆ −2S























< 0

∀ q, i = 1, . . . , nr and j = i, . . . , nr

(3.20)
then, the set EV ,

⋂

i

{

E(Q−1
i )
}

is λ-contractive and verifies EV ⊆
X {a}

⋂

S(ρ, h(k)).

Proof Assume that (3.20) is verified for all q, i = 1, . . . , nr and j =
i, . . . , nr. Multiply the inequalities successively by h(i)(k), h(j)(k) and
h(q)(k +1), and sum up on i, q = 1, . . . , nr and j = i, . . . , nr. Thus, the
inequality M(h(k)) < 0 holds if h(k) ∈ Ξ with

M(h) =









−Q(h+) A(h)U G(h)∆ −B(h)S
⋆ −λU′Q−1(h)U U′L′Ω U′Y′(h)
⋆ ⋆ −2∆ ∆F ′

c(h)
⋆ ⋆ ⋆ −2S









,

and the shorthands h = h(k) and h+ = h(k+1). Note that the matrices
Q(h), B(h), H(h) and Fc(h) can be written as (SILVA et al., 2014)









Q(h)
B(h)
H(h)
Fc(h)









=
nr
∑

i=1

nr
∑

j=i

(1 + ςij)h(i)(k)h(j)(k)









1

2









Qi + Qj

Bi + Bj

Hi + Hj

Fci + Fcj

















,

and that λU′Q−1(h)U ≥ −λ−1Q(h) + U′ + U (see the proof of Lemma
3.5 for a similar one) is verified since U is full rank from the (2, 2)
block of the left-hand side of (3.20). It is also observed that h and h+

are handled independently, which may be a source of conservativeness
of the presented technique, as well as the fact that solutions are valid
for any sequence of h(k).

Pre- and post-multiplication of M(h) by diag{I, (U′)−1, ∆−1, S−1}
and its transpose, respectively, yield a matrix inequality that can be re-
formulated by Schur’s complement as:
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MS(h) =





A′(h)
G′(h)

−B′(h)



Q−1(h+)





A′(h)
G′(h)

−B′(h)





′

+





−λQ−1(h) L′Ω∆−1 Y′(h)S−1

∆−1ΩL −2∆−1 F ′
c(h)S−1

S−1Y(h) S−1Fc(h) −2S−1



 < 0.

Thus, by defining ϑ(k) =
[

ξ
′

(k) ϕ
′

(k) Ψ
′

(u(k))
]′

, one gets:

ϑ
′

(k)Ms(h)ϑ(k) = ∆Vλ(ξ(k), h(k)) − 2ϕ
′

(π(k))∆−1 (ϕ(π(k)) − ΩLξ(k))

− 2Ψ′(u(k))S−1 (Ψ(u(k)) − Y(h(k))ξ(k) − Fc(h(k))ϕ(π(k))) < 0, (3.21)

which is valid for all h(k) ∈ Ξ.

Next, recall from Lemmas 3.5 and 3.6 that conditions (3.15) and
(3.18) guarantee E(Q−1(h(k))) ⊆ X {a} and E(Q−1(h(k))) ⊆ S(ρ, h(k)),
respectively. Thus, ∀ξ(k) ∈ E(Q−1(h(k))) ⊆ X {a}

⋂

S(ρ, h(k)) one has
by definition, that the nonlinearity ϕ(π(k)) verifies the sector condi-
tion (2.3) and, from Lemma 3.6, the nonlinearity Ψ(u(k)) verifies the
modified sector condition (3.19). Hence, inequality (3.21) implies that
relation (3.11) is verified for EV = E(Q−1(h(k))) and, by Definition
3.4, it is possible to conclude that this level set is λ-contractive, thereby
completing the proof.

3.3 STABILIZATION CONDITIONS

Considering the main objective previously formulated, i.e. define
a method for the dynamic output feedback control design, the condi-
tions presented in Lemma 3.7 are not adequate, which may only be
used for stability analysis. Therefore, to compute the controller, inspi-
red from the work in Scherer, Gahinet & Chilali (1997), it is possible
to define the nx-dimensional real square matrices X, Y , P , and Z (see
Castelan et al. (2010)) and

U =

[

X •
Z •

]

, U−1 =

[

Y •
P •

]

, Θ =

[

Y In

P 0

]

. (3.22)
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One has that: UΘ =

[

In X
0 Z

]

=⇒ Û = Θ′UΘ =

[

Y ′ T ′

In X

]

,

where:
T ′ = Y ′X + P ′Z. (3.23)

Furthermore, using the partitioning Qi =

[

Q11i Q12i

⋆ Q22i

]

, one can set:

Q̂i =Θ′QiΘ=





Y ′Q11iY + P ′Q′
12iY +

Y ′Q12iP + P ′Q22iP
Y ′Q11i+
P ′Q′

12i

⋆ Q11i



=

[

Q̂11i Q̂12i

⋆ Q̂22i

]

.

(3.24)
Thus, from Lemma 3.7, and by using the above definitions, it

is possible to propose the following convex synthesis condition that
provides a solution to Problem 3.1.

Theorem 3.8 (LA-Stabilization) Consider the system (3.1)-(3.4) and
a given real scalar λ ∈ (0, 1]. If there exist symmetric positive de-

finite matrices Q̂i, positive diagonal matrices S and ∆, matrices X,
Y , T , Âij, B̂ij, Ĝij, Êi, Ĉi, D̂i, F̂i of appropriate dimensions, and

Ĥ1i ∈ ℜnu×nx and Ĥ2i ∈ ℜnu×nx , i = 1, . . . , nr and j = i, . . . , nr, veri-
fying the LMIs conditions (3.25)-(3.27) and the nonsingular matrices Z
and P such that (3.23) is verified, then, the controller (3.5) structured
as in (3.7) with matrices given in (3.28) (see next page) and the set

S0 , E(Q−1(h(k)))=
⋂

i=1,...,nr
E
(

Q−1
i

)

are solutions to Problem 3.1.














































−Q̂q Π1
ij

Ĝij

2

(Gi + Gj)∆ + BiF̂j + BjF̂i

2

−
Êi + Êj

2

−
(

Bi + Bj

2

)

S

⋆ Π2
ij

L′Ω

X ′L′Ω

Ĥ ′
1i + Ĥ ′

1j

2

Ĥ ′
2i + Ĥ ′

2j

2

⋆ ⋆ −2∆
F̂ ′

i + F̂ ′
j

2

⋆ ⋆ ⋆ −2S















































< 0,

∀ q, i = 1, ..., nr and j = i, ..., nr (3.25)
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−Q̂i + Û + Û
′ (D̂i{ℓ}C)′ − Ĥ ′

1i{ℓ}

Ĉ′
i{ℓ} − Ĥ ′

2i{ℓ}

⋆ ρ2
{ℓ}











> 0,

∀ i = 1, ..., nr and ℓ = 1, ..., nu (3.26)










−Q̂i + Û + Û
′ N

′

{ℓ}

(NX)
′

{ℓ}

⋆ φ2
{ℓ}











> 0,

∀ i = 1, ..., nr and ℓ = 1, ..., nφ (3.27)

with

Π1
ij =







Y
′

(Ai + Aj) + B̂ijC

2

Âij

2
Ai + Aj + (BiD̂j + BjD̂i)C

2

(Ai + Aj)X + BiĈj + BjĈi

2






,

Π2
ij = λ−1

(

Q̂i + Q̂j

2

)

− Û − Û
′

.

Dci = D̂i , Cci = (Ĉi − DciCX)Z−1,

Eci = (P ′)−1(ÊiS
−1 − Y ′Bi), Fci = F̂i∆−1,

Bcij = (P ′)−1
[

B̂ij − Y ′(BiDcj + BjDci)
]

,

Gcij = (P ′)−1
[

Ĝij∆−1 − Y ′(Gi + Gj + BiFcj + BjFci)
]

,

Acij = (P ′)−1
[

Âij − Y ′(Ai + Aj)X − B̂ijCX

−Y ′(BiCcj + BjCci)Z
]

Z−1 ,



























































(3.28)

Proof Suppose there exists a solution to (3.25)-(3.27) for all q, i =
1, . . . , nr and j = i, . . . , nr. Then, from the (2, 2) block of (3.25), it
follows that Û > 0. Hence, in view of (3.23), the matrices X, Y and
(T ′ − Y ′X) are nonsingular. As a result, for any nonsingular P , the
matrices defined in (3.28) are well-defined.

Next, consider (3.24), define the change of variables D̂i, Ĉi,
F̂i, Êi, B̂ij, Ĝij and Âij, according to (3.28), and consider Hi =
[

Ĥ1i Ĥ2i

]

. Thus, pre- and post-multiplication the inequality (3.20) by
diag{Θ′, Θ′, I, I} and its transpose, respectively, leads to be concluded
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that the verification of (3.25) is equivalent to the verification of (3.20).
Likewise, pre- and post-multiplication of both inequalities (3.15) and
(3.18) by diag{Θ′, 1} and its transpose, respectively, shows their equi-
valence with (3.26) and (3.27). Thus, Lemma 3.7 can be applied to
conclude the proof.

3.4 SYNTHESIS OF THE DYNAMIC CONTROLLER

For solving Problem 3.1 different criteria can be used to optimize
the size of the set S0. Among them, a shape set approach can be
adopted to optimize the size of S0 according to the shape of the domain
of validity X {a} ∈ ℜ2nx . For this purpose, define the set V ⊂ ℜ2nx ,

V = Co

{

v̄σ ∈ ℜ2nx ; v̄σ =

[

vσ

0

]

, σ = 1, . . . , nσ

}

,

where the set of vectors {vσ ∈ ℜnx} contains the information necessary
to characterize the shape of X ⊂ ℜnx , the primary domain of validity
for the open-loop T-S fuzzy model. For instance, if X is a polytope
(closed and bounded polyhedron), i.e., nφ = nx, then each vσ is a
vertex of X . Otherwise, nφ < nx implies that X is unbounded along
the null space of N , and the vectors vσ can then be defined from the
vertices of the projection of X , along the null space of N , into the image
of N .

For example, if N =

[

−1 2 0
2 3 0

]

and φ =
[

1 2
]′

, one has that

nφ = 2, nx = 3 and X is defined by the set of vectors ± 1
7

[

1 4 0
]′

and ±
[

1 0 0
]′

, being not constrained along the direction of N (N) =
[

0 0 1
]′

. Then, in this case one has v1 = 1
7

[

1 4
]′

, v2 = −v1,

v3 =
[

1 0
]′

and v4 = −v3.
Thus, for the purposes of synthesis the objective will be to maxi-

mize β > 0 such that the inclusion βV ⊆ S0 is also verified. Considering
µ = 1/β2, this inclusion reads:

[

µ v̄
′

σ

⋆ Qi

]

≥ 0 ,
∀i = 1, . . . , nr

∀σ = 1, . . . , nσ
,

which, by pre- and post-multiplication by diag{1, Θ′} and its transpose,
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respectively, is equivalent to:







µ v
′

σY v
′

σ

⋆ Q̂i






≥ 0, i = 1, . . . , nr, σ = 1, . . . , nσ. (3.29)

In this way, by using Theorem 3.8 and condition (3.29), the
following convex optimization problem to synthesize the controller gains
can be proposed:

min

Q̄11i, Q̄12i, Q̄22i, Âij , Ĝij , X, Y, T, ∆, S,

B̂ij , Ĉi, D̂i, Êi, F̂i, Ĥ11i, Ĥ12i, Ĥ2i

µ

subject to

LMIs (3.25), (3.26), (3.27) and (3.29).

(3.30)

3.5 EXPERIMENTS

3.5.1 Illustrative Example Continued

For this experiment it is considered the system of the Illustrative
Example 2.3 (see Chapter 2, section 2.3), now subject to amplitude
bound control input

x(k + 1) = x3(k) + sin(x(k)) + (0.2 + x2(k))sat(u(k)) , y(k) = x(k)
(3.31)

Although (3.31) represents a unidimensional system, its applica-
tion here is interesting in terms of comparison and for graphical repre-
sentation (the augmented space belongs to ℜ2).

Now, defining the sector nonlinearity ϕ(y(k)) = sin(y(k)) ∈
S [0, 1], and considering the domain of validity defined by |x| ≤ 5π/12,
it is obtained a N-Fuzzy model with two local nonlinear rules, with
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matrices given by:

A1 = [ 1.7135 ] ; A2 = [ 0 ] ; B1 = [ 1.9135 ] ; B2 = [ 0.2000 ]

G1 = G2 = [ 1 ] ; L = 1 ; Ω = 1.

(3.32)
This illustrates how the use of N-fuzzy models can effectively reduce
the number of rules w.r.t. the classical fuzzy modeling used in (2.24).
The two nonlinear membership functions

h(1)(k) =
y2(k)

1.7135
and h(2)(k) = 1 − y2(k)

1.7135
,

are shown in Figure 13 for the considered domain of validity.
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Figure 13 – Nonlinear membership functions h(i)(k), ∀ i = 1, ..., 2

Figure 14 depicts the basins of attraction and the correspon-
ding estimates given by sets S0 using a simplified compensator with
Cc(h(k)) = Cc, Dc(h(k)) = Dc and Fc(h(k)) = Fc, as described in
Remark 3.2. In these figures the dashed lines represent the boundary
of the domain of validity. Firstly, it is observed that greater is the
level of saturation ρ, the greater are these estimates. Furthermore, for
any level of saturation ρ ≥ 1, all the system states inside domain of
validity can be steered to the origin, differently from the case without
saturation shown in Example 2.3.

In Figure 15 is observed the state trajectories and control efforts
considering three stabilizing initial conditions: ξ(0) = [0.7 0] marked
with �, ξ(0) = [1.1 0] marked with X, both inside the level set S0

and ξ(0) = [−1.28 0] marked with O, outside S0 but inside the domain
of validity X . Any trajectory initialized in S0 evolve inside it, even
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Figure 14 – Basin of attraction and S0
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Figure 15 – State trajectories and control effort

with possible control saturation, as is the case for the second initial
condition.

In the sequel, the proposed experiments correspond to the ap-
plication of algorithm (3.30) to some of the plants represented by T-S
fuzzy models described in Appendix B, aiming to elucidate the effec-
tiveness of the N-fuzzy approach.

3.5.2 Example 2

Consider a modified version of the two dimensional nonlinear
discrete-time system presented in Appendix B, section B.2, with state
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space representation as follows

x(1)(k + 1) = −
13

20
x(1)(k)+

11

20
x(2)(k)+

9

40
x

2
(1)(k)+

3

40
x(1)(k)x(2)(k)+ϕ(k)

x(2)(k + 1) =
1

5
x(1)(k)+

6

5
x(2)(k)+

1

5
x

2
(1)(k)+

1

20
x(1)(k)x(2)(k) +

5

4
u(k)

+
1

40
x(1)(k)u(k)

y(k) = x(1)(k)

where ϕ(k) = ϕ(y(k)) =
3

10
y(k)(1 + sin(y(k))) ∈ S[0, 0.7] and the

symmetrical limit of saturation is given by ρ = 1.1. The main modifi-
cations are related to disregard the disturbance and regulated output
signals, and in the variable dependency of the sector nonlinearity ϕ(k),
that is required for their real-time computation and consequently for
implementation purposes. An alternative to handle with unmeasurable
states will be discussed later in Chapter 5.

Despite the above considerations, the equivalent N-fuzzy model
is given in equation (B.3), with the domain of validity defined by X =
{x(k) ∈ ℜ2 : |x(1)(k)| ≤ 2 and |x(2)(k)| ≤ 1.5}.

Firstly, in order to demonstrate the relationship between the
performance parameter λ and the size of the corresponding contractive
region, it is applied the algorithm (3.30) for the values λ ∈ {1, 0.9, 0.8},
where it is obtained, respectively, the values β ∈{0.3617, 0.2869, 0.2153}.
Notice that demanding a higher speed of convergence (lower value of
λ), lower is the value of β and, in consequence, the size of the set S0 in
which the performance is guaranteed.

Figure 16 depicts the basin of attraction and the corresponding
estimates given by SR (stability region) considering λ = 1 and λ = 0.9.
Based on real applications, the initial conditions of interest are of the
type ξ(0) = [x(0)

′

, 0]
′

. In this case, the region SR (the set of admissible
initial conditions) correspond to the intersection of S0 with the plane
formed by the states of the plant. Once the states of the controller
xc can assume non-zero values for k > 0, the projected trajectory over
the subspace of the plant evolve in a domain called CR (confinement
region), i.e. x(0) ∈ SR ⇒ x(k) ∈ CR ⊆ X , ∀ k > 0 (see Appendix
E, particularly Figure 46). The set CR correspond to the orthogonal
projection of S0 with the plane formed by the states of the plant.

Also in Figure 16, the points marked with X correspond to desta-
bilizing initial conditions and/or whose trajectories evolve outside the
domain of validity X (leading to undesirable system behaviors). Note
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Figure 16 – Basin of attraction and associated sets

that such a condition can exist even inside X , demonstrating again
the importance of considering the local characteristics of the T-S fuzzy
models. At last, comparing the sizes of SR it is possible to verify the
aforementioned trade-off between λ and β.

For the temporal simulation is considered the initial condition

ξ(0) = [x(0)
′

, 0]
′

, with x(0) =
[

1.15 1
]

′

. This initial condition be-
longs to the set of admissible initial conditions SR of the controllers de-
signed with λ = 1 and λ = 0.9. As expected, the best time-performance,
relative to the lower contractive parameter λ, can be observed compa-
ring the state trajectories in Figure 17, as well as by comparison the
decrease of the Lyapunov function corresponding to these trajectories,
as shown in Figure 18.
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Figure 17 – State trajectories for example 1
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Figure 18 – Lyapunov Functions: “◦” for λ = 1 and “×” for λ = 0.9

3.6 CONCLUDING REMARKS

In this chapter a convex design of a nonlinear parallel-distributed-
compensator that, by dynamic output feedback, stabilizes a class of
nonlinear discrete-time systems with saturated control inputs was pre-
sented. An important contribution is the consideration of the inherent
local/regional validity of the fuzzy model, assuring that, with the pro-
posed initial conditions, the closed-loop system will operate inside a
specified domain of the state space (where the fuzzy model convexity
is valid and/or the system operation is safe). The proposed controller
contains a fuzzy anti-windup gain that helps mitigate the undesirable ef-
fects of saturation and considers some performance requirements, which
are associated with the contractivity coefficient of the trajectories in the
considered level set.

For now it is assumed the real time availability of the member-
ship functions vector h(k) for the controller. This fact implies that
either h(k) should be directly measurable, or it should be reconstituted
by measurable signals/states, which is more common in practice. An
alternative to handling unmeasurable states will be discussed later in
Chapter 5. Another important detail is that the results obtained by
using N-fuzzy modeling, despite the reduced number of rules, present a
similar degree of conservatism in terms of the size of the stability and
confinement regions, or even lower than the analogous results using the
classical fuzzy approach.
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4 CONTROL SYNTHESIS FOR NONLINEAR
SYSTEMS SUBJECT TO ENERGY BOUNDED
DISTURBANCES

In this chapter, it is addressed the local stabilization problem of
nonlinear discrete-time systems subject to energy bounded disturbances
by means of T-S fuzzy models. The proposed controller consists of
a nonlinear state feedback which depends on the fuzzy membership
function as well as the sector bounded nonlinearities, in the case of an N-
fuzzy model. In this setup, LMI control design conditions are proposed
to locally ensure the input-to-state stability in the ℓ2-sense (ℓ2-ISS)
and a certain input-to-output performance (i.e., an upper bound for
the system ℓ2-gain) of the original nonlinear discrete-time system.

Additionally, the design conditions provide an estimate of the
closed-loop reachable set (that is, a region inside the T-S domain of va-
lidity which bounds the state trajectories driven by the admissible class
of ℓ2 disturbances). Finally, three (convex) optimization problems are
proposed to either minimize the estimate of the reachable set, improve
the disturbance tolerance or minimize the ℓ2-gain from the disturbance
input to the regulated output; and numerical examples are considered
to demonstrate the effectiveness of the proposed approach as a con-
trol design tool for nonlinear discrete-time systems subject to energy
bounded disturbances. The results presented here are based on the
works Klug, Castelan & Coutinho (2013), in which the ISS in the ℓ2-
sense was first investigated, and Klug, Castelan & Coutinho (2015b).

4.1 PROBLEM FORMULATION

Consider the class of nonlinear systems in (2.1) with the addition
of a regulated output vector zk ∈ Z ⊂ ℜnz , represented by

x(k + 1) = f(x(k)) + V (x(k))u(k) + T (x(k))w(k)
z(k) = fz(x(k)) + Vz(x(k))u(k) + Tz(x(k))w(k)

(4.1)

where x(k) ∈ X ⊂ ℜnx , u(k) ∈ U ⊂ ℜnu and wk ∈ W ⊂ ℜnw are
respectively the state, the control input and the exogenous disturbance
vectors. The functions f(·) : ℜnx −→ ℜnx , with f(0) = 0, fz(·) :
ℜnx −→ ℜnz , with fz(0) = 0, V (·) : ℜnx −→ ℜnx×nu , Vz(·) : ℜnx −→
ℜnz×nu , T (·) : ℜnx −→ ℜnx×nw and Tz(·) : ℜnx −→ ℜnz×nw are
continuous and bounded for all x(k) ∈ X . The additional signal z(k)
is required for the desired control purposes.
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In order to design a state feedback control law uk = κ(xk), the
nonlinear system (4.1) will be represented by means of N-fuzzy model
(using the procedure explained in section 2.2 with similar steps for the
nonlinearities in the vector z(k)), described through the defuzzification
method by center of gravity as

x(k + 1)=A(h(k))x(k)+B(h(k))u(k)+Bw(h(k))w(k)+G(h(k))ϕ(k)
z(k)=Cz(h(k))x(k)+Bz(h(k))u(k)+Bzw(h(k))w(k)+Gz(h(k))ϕ(k)

(4.2)
The disturbance input vector w(k) is assumed to lie inside the following
class of square summable sequences:

W := {w(k) : ‖w(k)‖2
ℓ2

≤ δ−1}, (4.3)

where δ is a positive scalar defining the size of W (i.e., the energy bound
of w(k)). The set W will be often referred as the class of admissible
disturbances.

Complementing the fuzzy model description (4.2), the vector of
nonlinearities ϕ(k) = ϕ(Lx(k)) ∈ ℜnϕ verifies (at least locally) the
sector condition (2.3), and the matrix structure is given by:

[

A(h(k)) B(h(k)) Bw(h(k)) G(h(k))
Cz(h(k)) Bz(h(k)) Bzw(h(k)) Gz(h(k))

]

=

nr
∑

i=1

h(i)(k)

[

Ai Bi Bwi Gi

Czi Bzi Bzwi Gzi

]

.

At last, the T-S model domain of validity X is described by (2.17). It
should be remembered that x(k) ∈ X ⇒ h(k) ∈ Ξ, with Ξ as defined in
(3.2), i.e. X is a region of the state space where the convexity property
of set (3.2) holds true. Such domain of validity must be taken into
account by any control synthesis or stability analysis condition that
assumes description (4.2) instead of (4.1). In particular, loss of per-
formance or even instability may occur when state trajectories evolve
outside the domain of validity of the model (4.2). In this sense, one
purpose is to handle the domain of validity of the T-S model into the
controller synthesis stage to assure local closed-loop stability.

Assuming that the normalized membership functions h(k) can
be computed in real-time, a nonlinear controller can be proposed with
the same fuzzy rules as the nonlinear T-S model in (4.2). In this case,
the following nonlinear state feedback control law is proposed:
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u(k) = κ(xk) = K(h(k))x(k) + Γ(h(k))ϕ(k) (4.4)

where
[

K(h(k)) Γ(h(k))
]

=
nr
∑

i=1

h(i)(k)
[

Ki Γi

]

, with Ki ∈ ℜnu×nx

and Γi ∈ ℜnu×nϕ .
Taking (4.2) and (4.4) into account, the closed-loop T-S fuzzy

model is as follows:

x(k + 1) = A(h(k))x(k) + Bw(h(k))w(k) + G(h(k))ϕ(k)
z(k) = C(h(k))x(k) + Bzw(h(k))w(k) + F(h(k))ϕ(k)

(4.5)

with
A(h(k)) = A(h(k)) + B(h(k))K(h(k)),
G(h(k)) = G(h(k)) + B(h(k))Γ(h(k)),
C(h(k)) = Cz(h(k)) + Bz(h(k))K(h(k)) and
F(h(k)) = Gz(h(k)) + Bz(h(k))Γ(h(k)).

The closed-loop matrices A(h(k)), G(h(k)), C(h(k)) and F(h(k)) can
be generically rewritten, through summation properties, as

T (h(k)) =
nr
∑

i=1

nr
∑

j=i

(1 + ςij)h(i)(k)h(j)(k)
Ti + XiYj + Tj + XjYi

2
(4.6)

where the tuple (T , T, X, Y ) represents either (A, A, B, K), (G, G, B, Γ),
(C, Cz, Bz, K) or (F , Gz, Bz, Γ), and ςij is a binary variable such that
(as previously defined in (3.8))

ςij =

{

1 if i 6= j,
0 otherwise.

(4.7)

Notice that the ℓ2-ISS of system (4.5) for all h(k) ∈ Ξ implies
that the original nonlinear system in (4.1) with (4.4) is also ISS stable.
This is satisfied if the trajectory x(k) of (4.5) driven by w(k) ∈ W
remains in X for all k ≥ 0. In order to obtain LMI constraints guaran-
teeing the state trajectory boundness inside X , the following problem
will be addressed in this work.

Problem 4.1 Determine the gain matrices Ki and Γi, for i = 1, ..., nr,
such that the trajectories of system (4.5) remain bounded in some re-
gion D containing the origin such that D ⊂ X for any w(k) ∈ W and
for all h(k) ∈ Ξ. In addition, determine a positive constant γ which
bounds the induced ℓ2-norm from w(k) to z(k).
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From the above control problem different optimization design
criteria can be considered to compute the matrices Ki and Γi, as for
example to minimize the ℓ2-gain (by minimizing γ), to maximize the
size of the class of admissible disturbances (by minimizing δ) or to
minimize the size of a trajectory bounding set for a given class of ad-
missible disturbances W (by considering that δ and γ are given). These
optimization problems are better discussed later.

To end this section, some preliminary results which will be in-
strumental to derive the synthesis conditions are given below.

Let V (x(k), h(k)) be a fuzzy Lyapunov function (FLF)

V (x(k), h(k)) : ℜnx × Ξ → ℜ+ , V (0, h(k)) = 0
∀ h(k) ∈ Ξ (4.8)

and the set D defined as follows

D △
= {x(k) ∈ ℜnx : V (x(k), h(k)) ≤ δ−1, ∀ h(k) ∈ Ξ} , (4.9)

where δ is the positive scalar defining the bound of W in (4.3).
In the following, it is defined the notion of input-to-state stability

in the ℓ2-sense for nonlinear discrete-time systems to be considered in
this thesis.

Definition 4.2 Consider the system (4.1), with x(0) = 0, and the
level set D as defined in (4.9) for a given positive scalar δ. The unforced
system in (4.1) is said to be ℓ2-ISSD (input-to-state stable with respect
to D), if for any w(k) ∈ W the system state x(k) remains bounded in
D for all k ≥ 0.

Observe that the above definition implies that D is a positively
invariant set. Thus, x(0) ∈ D implies that

V (x(k), h(k)) ≤ δ−1 , ∀ k ≥ 0 , h(k) ∈ Ξ . (4.10)

Lemma 4.3 The unforced system (4.1), with x(0) = 0, is ℓ2-ISSD

and there exists an upper bound γ on the ℓ2-gain from w(k) to z(k) if
the following holds for all x(k) ∈ D, h(k) ∈ Ξ and w(k) ∈ W:

∆V (k)
△
= V (x(k + 1), h(k + 1)) − V (x(k), h(k))

+ γ−2z
′

(k)z(k) − w
′

(k)w(k) < 0 (4.11)

Proof Assume that (4.11) holds ∀ x(k) ∈ D, h(k) ∈ Ξ, w(k) ∈ W.
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Then, for any k̄ > 0, leads to:

k̄−1
∑

k=0

∆V (k) = V
(

x(k̄), h(k̄)
)

− V (x(0), h(0))

+γ−2

k̄−1
∑

k=0

z(k)
′

z(k) −
k̄−1
∑

k=0

w(k)
′

w(k) < 0

(4.12)

Thus, in view of (4.3) and (4.8), the above implies:

i) ℓ2 input-to-state stability: note that V (x(0), h(0)) = 0, since x(0) =
0. Then, it has V

(

x(k̄), h(k̄)
)

≤ ‖w(k)‖2
2 ≤ δ−1, ∀ k̄ > 0. That is,

D is a positive invariant set.

ii) input-to-output performance: taking k̄ → ∞, it follows that ‖z(k)‖2 <
γ‖w(k)‖2. That is, γ is an upper-bound on the system ℓ2-gain.

iii) internal stability: let k̃ be a positive integer. If w(k) = 0 for all
k ≥ k̃, then the condition in (4.11) implies that V (x(k + 1), h(k +
1))−V (x(k), h(k)) < −γ−2z(k)

′

z(k) < 0 guaranteeing that x(k) →
0 as k → ∞. In other words, D is a contractive positive invari-
ant set whenever the disturbance w(k) vanishes (see, e.g., (KLUG;

CASTELAN; LEITE, 2011)).

4.2 CONTROL DESIGN

For the purpose of synthesizing the controller (4.4) which ensures
that the nonlinear system (4.1) is locally ℓ2-ISSD in closed-loop, it is
considered the N-Fuzzy representation given in (4.5). To this end, let
the following FLF:

V (x(k), h(k)) = x(k)
′

Q−1(h(k))x(k), Q(h(k)) =
nr
∑

i=1

hk(i)Qi , (4.13)

with Qi = Q
′

i > 0 ∈ ℜnx×nx , i=1, . . . , nr, to be determined.
In light of the above, it is required to consider D ⊂ X for all

h(k) ∈ Ξ in Lemma 4.3 to guarantee the convexity of the fuzzy model
in (4.5). Furthermore, it can be shown that the level set D as defined
in (4.9) with (4.13) will be the intersection of nr ellipsoidal sets (HU; Z.;

M., 2002; JUNGERS; CASTELAN, 2011), given by

D △
=

⋂

i∈{1,...nr}

E(Q−1
i , δ−1) (4.14)
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where E(Q−1
i , δ−1) =

{

x(k) ∈ ℜnx : x(k)
′

Q−1
i x(k) ≤ δ−1

}

is the i-th

ellipsoidal set.
In the sequel, sufficient design conditions based on LMIs to deter-

mine the control law (4.4) which locally stabilizes the nonlinear system
(4.1) in the ℓ2-ISSD sense are presented.

Theorem 4.4 Suppose there exist symmetric positive definite matri-
ces Qi ∈ ℜnx×nx , i = 1, . . . , nr; a diagonal positive definite matrix
∆ ∈ ℜnϕ×nϕ ; matrices Y1i ∈ ℜnu×nx , Y2i ∈ ℜnu×nϕ , i = 1, . . . , nr,
and U ∈ ℜnx×nx ; and positive scalars δ and γ satisfying the following
LMIs:



















−Qq Π1
ij Π3

ij

Bwi + Bwj

2
0

⋆ Π2
ij U

′

L
′

Ω 0 Π4
ij

⋆ ⋆ −2∆ 0 Π5
ij

⋆ ⋆ ⋆ −γ2I
B

′

zwi + B
′

zwj

2
⋆ ⋆ ⋆ ⋆ −I



















< 0

∀ q, i = 1, . . . , nr and j = i, . . . , nr

(4.15)

[

−Qi QiN
′

{ℓ}

⋆ −δφ2
{ℓ}

]

≤ 0 , ∀ i = 1, . . . , nr and ℓ = 1, . . . , nφ , (4.16)

where

Π1
ij = 0.5 (AiU + BiY1j + AjU + BjY1i) ,

Π2
ij = 0.5 (Qi + Qj) − U − U

′

,

Π3
ij = 0.5 (Gi∆ + BiY2j + Gj∆ + BjY2i) ,

Π4
ij = 0.5

(

U
′

C
′

zi + Y
′

1iB
′

zj + U
′

Czj + Y
′

1jB
′

zi

)

,

Π5
ij = 0.5

(

∆G
′

zi + Y
′

2iB
′

zj + ∆G
′

zj + Y
′

2jB
′

zi

)

.

(4.17)

Let Ki = Y1iU
−1 and Γi = Y2i∆−1, i = 1, . . . , nr. In addition,

consider the nonlinear system (4.1), with (4.4), and its exact N-fuzzy
representation in (4.5). Then, the following holds for zero initial con-
ditions:

a) x(k) remains bounded in D for any w(k) ∈ W;

b) ‖z(k)‖2 ≤ γ ‖w(k)‖2 for all w(k) ∈ W;

c) x(k) → 0 as k → ∞ if there exists k̃ > 0 such that w(k) = 0 for
all k ≥ k̃;
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d) D ⊆ E(Q−1
i , δ−1) ⊂ X , for i = 1, ..., nr.

Proof Assume that (4.15) is verified for all q, i = 1, . . . , nr and j =
i, . . . , nr. Replace Y1i and Y2i respectively by KiU and Γi∆. Multiply
the resulting inequalities successively by h(i)(k), h(j)(k), h(q)(k + 1),
and sum up on i, q = 1, . . . , nr and j = i, . . . , nr. Thus, the inequality
M(h(k)) < 0 holds if h(k) ∈ Ξ with

M(h) =













−Q(h+) A(h)U G(h)∆ Bw(h) 0
⋆ U ′Q−1(h)U U ′L

′

Ω 0 U
′C(h)

⋆ ⋆ −2∆ 0 ∆F(h)
⋆ ⋆ ⋆ −γ2I B

′

zw(h)
⋆ ⋆ ⋆ ⋆ −I













and the shorthands h = h(k) and h+ = h(k+1). Note that the matrices
Q(h), Bw(h) and Bzw(h) can be written as (SILVA et al., 2014)





Q(h)
Bw(h)
Bzw(h)



=
nr
∑

i=1

nr
∑

j=i

(1 + ςij)h(i)(k)h(j)(k)





1

2





Qi + Qj

Bwi + Bwj

Bzwi + Bzwj







,

and that U ′Q−1(h)U ≥ −Q(h) + U ′ + U is verified since U is full rank
from the (2, 2) block of the left-hand side of (4.15).

Further, let the congruence transformation ΠM(h)Π
′

with

Π =













0 I 0 0 0
0 0 0 (U

′

)−1 0
0 0 ∆−1 0 0
I 0 0 0 0
0 0 0 0 I













.

Thus, applying the Schur’s complement to ΠM(h)Π
′

< 0 yields:

MS(h) = ϑ
′

1(k)Q−1(h+)ϑ1(k) +





C′

(h)
B

′

zw(h)
F ′

(h)









C′

(h)
B

′

zw(h)
F ′

(h)





′

−





Q−1(h) 0 −L
′

Ω∆−1

0 γ2I 0
−∆−1ΩL 0 2∆−1



 < 0 . (4.18)

with ϑ1(k) =
[

A(h(k)) Bw(h(k)) G(h(k))
]

.



82

Now, let ϑ2(k) =
[

x
′

(k) w
′

(k) ϕ
′

(k)
]′

. Then, in view of (4.18), one
has that:

ϑ
′

2(k)MS(h(k))ϑ2(k) = ∆V (k) − 2ϕ
′

(k)∆−1(ϕ(k) − ΩLx(k)) < 0 ,
(4.19)

if h(k) ∈ Ξ.
Hence, the condition (4.19) implies that ∆V (k) < 0 whenever

h(k) ∈ Ξ and the sector condition (2.3) is verified. Assuming that x(k)
does not leave X , for all k ≥ 0, it is inferred that condition (4.12) is
also satisfied. In this way the properties a), b) and c) in Theorem 4.4
are guaranteed, and consequently i), ii) and iii) from Lemma 4.3.

Now, it is required to show that x(k) ∈ X , for all k ≥ 0, and
consequently h(k) ∈ Ξ. To this end, assume that (4.16) is verified.
Then, multiplying (4.16) by h(i)(k) and summing up on i = 1, . . . , nr

leads to:

Λ =

[

−Q(h(k)) Q(h(k))N
′

{ℓ}

⋆ −δφ2
{ℓ}

]

≤ 0.

Let F = diag{Q−1(h(k)), 1}. Hence, the congruence transformation
F ′

ΛF = Λ̃ yields

Λ̃ =

[

−Q−1(h(k)) N
′

{ℓ}

⋆ −δφ2
{ℓ}

]

≤ 0.

By applying the Schur’s complement to Λ̃, it is obtained:

N
′

{ℓ}(δφ2
{ℓ})−1N{ℓ} − Q−1(h(k)) ≤ 0.

Pre- and post-multiplying the above respectively by x(k)
′

and x(k) and
considering the S-procedure leads to:

x
′

(k)N
′

{ℓ}φ−2
{ℓ}N{ℓ}x(k) ≤ 1, ∀ x(k) ∈ D ,

D = {x : x
′

(k)Q−1(h(k))x(k) ≤ δ−1}
That is, E(Q−1

i , δ−1) ⊂ X , ∀i = 1, ..., nr. Recalling from (4.14) that
D ⊆ E(Q−1

i , δ−1), it is possible to ensure the property d) and infer
from Lemma 4.3 that x(k) ∈ D, for all k ≥ 0, which concludes the
proof.

Remark 4.5 It is possible to apply Theorem 4.4 to systems repre-
sented by classical T-S fuzzy models (without the nonlinear term) by
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eliminating the third row and column block of the matrix on the left-
hand side of (4.15).

Remark 4.6 It is interesting to note that the stabilization condition
(4.15) has a reduced number of LMIs when compared to other tech-
niques in literature. This is due to the use of the property (4.6) and the
definition of the variable ςij in (4.7). See, for instance, Theorem 6.6
of (FENG, 2010), where the resulting LMIs are required to be verified
∀ i, j, q = 1, ..., nr.

4.3 DESIGN ISSUES

Now, three extensions of Theorem 4.4 are proposed. The pur-
pose is to demonstrate the potential of the described approach as a con-
trol design tool for nonlinear discrete-time systems subject to energy
bounded disturbances.

4.3.1 Disturbance Tolerance

The disturbance tolerance criterion consists in maximizing a
bound on the disturbance energy to which one can ensure that the sys-
tem trajectories remain bounded (and inside the domain of validity).
This can be accomplished by the following optimization problem.

min δ
Qi, ∆, Y1i, Y2i, U

{

subject to
LMIs (4.15) and (4.16).

(4.20)

Notice that the minimization of δ implies in maximizing the set
of admissible disturbances W.

4.3.2 Disturbance Attenuation

For a given disturbance energy level δ−1, the disturbance atte-
nuation criterion consists in minimizing an upper bound on the ℓ2-gain
from w(k) to z(k) while guaranteeing that x(k) ∈ X , which can be
obtained from the solution of the following optimization problem:

min γ
Qi, ∆, Y1i, Y2i, U

{

subject to
LMIs (4.15) and (4.16).

(4.21)
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4.3.3 Reachable Set Estimation

The reachable set estimation criterion consists in minimizing the
set D (an estimate of the reachable set) for a specific disturbance energy
level δ−1 and a guaranteed bound γ on the system ℓ2-gain. This objec-
tive can be accomplished by considering the inclusion E(Q−1

i , δ−1) ⊂
βX , ∀i = 1, ..., nr, β ∈ (0, 1], which is obtained by modifying the con-
dition in (4.16) as follows:

[

−Qi QiN
′

{ℓ}

⋆ −β2δφ2
{ℓ}

]

≤ 0

∀i = 1, ..., nr and ℓ = 1, ..., η

(4.22)

Then, the objective is to obtain the lowest value for β which will
be useful in practice whenever the effects of the disturbances over the
system trajectories are to be minimized. This criteria can be obtained
by the following optimization problem:

min β
Qi, ∆, Y1i, Y2i, U

{

subject to
LMIs (4.15), (4.22) and 0 < β ≤ 1 .

(4.23)

4.4 EXPERIMENTS

Two numerical examples are presented in this section. The first
one demonstrates some stability issues that can occur when the domain
of validity is not considered. In this sense a nonlinear plant is modeled
by the classical T-S form and the region X , where the model conve-
xity is guaranteed, is not taken into account in the design phase. In
the second example, it is shown the effectiveness of the proposed tech-
nique considering the optimization problems described in the previous
section.

4.4.1 Example 1

Consider the control problem of backing-up a truck-trailer as
studied in Lo & Lin (2003). The state space representation of the
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system is described by (see Appendix B)

x(1)(k + 1) = x(1)(k) − vT

L sin(x(1)(k)) +
vT

l
u(k)

x(2)(k + 1) = x(2)(k) +
vT

L sin(x(1)(k)) + 0.2w(k)

x(3)(k + 1) = x(3)(k) + vT cos(x(1)(k)) sin(x(2)(k)

+
vT

2L sin(x(1)(k))) + 0.1w(k)

z(k) = 7x(1)(k) − vTx(2)(k) + 0.03x(3)(k) − vT

l
u(k)

where the variables definitions, constant values, and their equivalent
fuzzy representation are presented in section B.3, equation (B.5), with
X = {x(k) ∈ ℜ2 : |x(1)(k)| ≤ π/3 and |x(2)(k)| ≤ 170π/180}. In
order to allow a comparison with other techniques was considered the
classical modeling, resulting in eight linear local rules for the model.
The objective is to demonstrate the problems that can occur in practice
when the model validity domain is not considered (usually assumed in
the literature).

In light of the above, and for comparison purposes, the following
control approaches using classical T-S fuzzy models are taken into ac-
count:

• case 1 - Theorem 6.6 of (FENG, 2010);

• case 2 - Remark 4.5 without the inclusion constraint in (4.16).

By solving an optimization problem aiming the minimization of the up-
per bound on the ℓ2-gain from w(k) to z(k), it is respectively obtained
the upper-bounds γ = 0.4171 and γ = 0.3430 for the cases 1 and 2.
Notice that the bound obtained in case 2 is less conservative than the
one obtained in case 1.

Figure 19 shows the projections of the closed-loop system trajec-
tories1 on the plane x(1), x(2) and ℓ2-gains using the results obtained
in case 1, for the following three different disturbance signals with
‖w1(k)‖ℓ2

= 7.8731, ‖w2(k)‖ℓ2
= 10.3923 and ‖w3(k)‖ℓ2

= 24,

w1(k) =

{

ek, 1 ≤ k ≤ 2
0, k < 1, k > 2

, w2(k) =

{

−6, 1 ≤ k ≤ 3
0, k < 1, k > 3

,

1The simulations were performed considering the closed-loop system composed
of the designed fuzzy controller and the original nonlinear plant
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w3(k) =

{

8, 1 ≤ k ≤ 9
0, k < 1, k > 9

.
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Figure 19 – Domain of validity, trajectories, and ℓ2-gain

Figure 19(b) shows that the closed-loop state trajectory may ei-
ther remain bounded or diverge to infinity. Precisely, the trajectories
driven by w1(k) and w2(k) are bounded and by w3(k) goes to infinity.
However, it is important to emphasize that although the trajectory im-
posed by w2(k) is bounded and verifies the required performance, it
reaches an impracticable jack-knife condition for the system. The in-
stability and jack-knife condition problems stem from the fact that the
fuzzy model domain of validity X has not been considered in the de-
sign phase leading to undesirable system behaviors. Notice by applying
optimization problem (4.21) that is possible to determine control laws
which ensure that the state trajectory is confined to the domain of vali-
dity while guaranteeing upper-bounds on the ℓ2-gain for the exogenous
signals w1(k), w2(k) and w3(k).

4.4.2 Example 2

This experiment aims to demonstrate the potential of the des-
cribed approach as a control design tool for nonlinear discrete-time
systems subject to energy bounded disturbances. To this end, consider
the two dimensional nonlinear system presented in Appendix B, section
B.2. The state space representation of the system is given by:
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x(1)(k + 1) = −
13

20
x(1)(k)+

11

20
x(2)(k)+

9

40
x

2
(1)(k)+

3

40
x(1)(k)x(2)(k)

+
3

10
x(2)(k)(1 + sin(x(2)(k)))

x(2)(k + 1) =
1

5
x(1)(k)+

6

5
x(2)(k)+

1

5
x

2
(1)(k)+

1

20
x(1)(k)x(2)(k)

+
5

4
u(k)+

1

40
x(1)(k)u(k)+

51

100
w(k)+

39

400
x(1)(k)w(k)

z(k) = x(1)(k) +
23

20
u(k) +

7

40
x(1)(k)u(k)

The N-fuzzy model that represents the above system and the
respective procedure for obtaining it are also presented in Appendix
B, section B.2 (see (B.3) for the resulting equations of the model),
with the domain of validity defined by X = {x(k) ∈ ℜ2 : |x(1)(k)| ≤
2 and |x(2)(k)| ≤ 1.5}.

Firstly, applying the disturbance tolerance problem in (4.20) for
a given set of ℓ2-gain values, it is obtained the results shown in Table 1.
Notice that smaller is the upper-bound γ on the system ℓ2-gain, larger
is the value of δ (i.e., the set of admissible disturbances is smaller).

Table 1 – Disturbance tolerance

γ 1.5 2 2.5 3
δ 0.4530 0.1860 0.1037 0.0671

On the other hand, considering that the bound on the admissible
disturbances is known a priori, it is applied the disturbance attenuation
optimization problem in (4.21). The results are described in Table 2
showing that larger values of δ will lead to smaller upper-bounds on
the ℓ2-gain.

Table 2 – Disturbance attenuation

δ 0.1 0.2 0.5 1
γ 2.5367 1.9487 1.4595 1.3273

These two experiments clearly illustrate that the disturbance
attenuation properties of the original nonlinear system are state depen-
dent contrasting with standard T-S fuzzy approaches which assume a
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constant ℓ2-gain regardless the disturbance energy. To emphasize this
point, Figures 20(a) and 20(b) show the estimates of the reachable set
(given by D) and the state trajectory evolution of the closed-loop sys-
tem considering controllers derived from (4.20) and (4.21), respectively,
for the pairs {γ , δ} = {2.5 , 0.1037} and {δ , γ} = {0.1 , 2.5367}. The
disturbance signals are respectively similar to the w2(k) and w1(k) sig-
nals considered in Example 1, but with a reduced amplitude to achieve
the desired energy level, where xw1

and xw2
means state trajectories

driven respectively by w1(k) and w2(k). Notice in both cases that: i)
the state trajectories remains bounded in X for all samples; and ii)
a certain duality between the optimization problems (4.20) and (4.21)
since they led to similar estimates of the reachable set.
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Figure 20 – Regions and trajectories for the optimization algorithms

Finally, consider δ = 1, γ = 2 and the reachable set estima-
tion algorithm in (4.23). Thus, the following controller matrices are
obtained:

K1 =
[

−0.4215 −0.6371
]

, K2 =
[

−0.5453 −0.7070
]

,

Γ1 = 0.3949, and Γ2 = 0.4186.

In Figure 21(a), it is observed the region estimated for this par-
ticular case with an optimal β = 0.4313 ≤ 1. To evaluate the method
conservativeness, the state trajectory driven by the following signal
(which respects the energy bound)

w(k) =

{

0.7, 1 ≤ k ≤ 2
0, elsewhere
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is also plotted in Figure 21(a), demonstrating that the reachable set
estimate is tight. For illustrative purposes, the time response of the
state trajectories and the control effort are shown in Figures 21(b) and
22, respectively.
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Figure 21 – Regions and trajectories
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Figure 22 – Control effort

4.5 CONCLUDING REMARKS

A convex approach for the design of fuzzy controllers that locally
stabilizes nonlinear discrete-time systems subject to energy bounded
disturbances was addressed in this chapter. Considering fuzzy Lya-
punov functions, three optimization problems in terms of LMI cons-
traints were proposed to design a nonlinear state-feedback control law,
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which is a function of the membership fuzzy functions and cone sec-
tor nonlinearities. It turns out that the provided approach locally en-
sures the ℓ2-ISS of the original nonlinear system while guaranteeing a
certain input-to-output performance for a given class of disturbance
signals. Also, the numerical examples stressed this ability of the pro-
posed methodology to deal with the ℓ2-control problems in a more
realistic basis than other existing fuzzy techniques that do not consider
the regional validity problematic. Additionally, it is worth mentioning
that the considered problem can be extended to deal with the local
ℓ2-ISS stabilization problem in the presence of control saturation (TAR-

BOURIECH et al., 2011a), using the framework described in the previous
chapter.



5 CONTROL SYNTHESIS FOR NONLINEAR
SYSTEMS SUBJECT TO AMPLITUDE BOUNDED
DISTURBANCES

In this chapter the local stabilization problem of nonlinear discre-
te-time systems subject to amplitude bounded disturbances is addressed
by means of T-S fuzzy models. Note that even though the dynamics
of exogenous persistent signals are generally unknown, it is common
to obtain an upper and a lower bound of the values that the signal
can assume over time. It is also worth noting that in the presence of
amplitude bounded disturbances, the asymptotic stability of the origin
can not be guaranteed and in this case the concept of ultimate bounded
(UB) stability is considered (i.e., the state trajectory is guaranteed to
converge to a region in the vicinity of the system origin).

The proposed controllers are based on the state and dynamic
output feedback, and the main contribution is related to the use of
two ellipsoidal sets, EE and EI , both contained in the region of validity
of the fuzzy model, which have different shapes and are respectively
associated with the set of admissible initial conditions and the concept
of UB stability. In other words, the state trajectories starting in the
set EE will converge in finite-time to the internal set EI and never leave
it. In addition, the design conditions ensure that the state trajectory
driven by admissible (amplitude bounded) disturbances remains inside
the T-S domain of validity guaranteeing the closed-loop UB stability of
the original nonlinear system. An optimization problem is proposed to
maximize EE and to minimize EI . The results presented here are based
on the work Klug, Castelan & Coutinho (2015).

5.1 PROBLEM FORMULATION

Consider the class of nonlinear systems with state space repre-
sentation affine in the input and disturbance signals defined in Chapter
2, which equation (2.1) is repeated here for sake of completeness:

x(k + 1) = f(x(k)) + V (x(k))u(k) + T (x(k))w(k)
y(k) = Cx(k)

where x(k) ∈ X ⊂ ℜnx , u(k) ∈ U ⊂ ℜnu , y(k) ∈ Y ⊂ ℜny are respec-
tively the state, the control input and the system output vectors. The
functions f(·) : ℜnx −→ ℜnx , with f(0) = 0, V (·) : ℜnx −→ ℜnx×nu
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and T (·) : ℜnx −→ ℜnx×nw are continuous and bounded for all x(k) ∈
X , and C ∈ ℜny×nx is a constant matrix. In this chapter, it is assumed
with respect to (w.r.t.) system (2.1) that the disturbance input vector
w(k) lies inside the following set:

W := {w(k) ∈ ℜnw : w
′

(k)Rw(k) ≤ δ−1} (5.1)

with R = R
′

> 0 and δ > 0. That is, the class of admissible dis-
turbances consist on amplitude bounded signals (or any persistent sig-
nal, deterministic or stochastic, limited over time). For instance, if
R = diag{r1, r2, ..., rnw

}, ri ∈ ℜ, then
∣

∣w(i)(k)
∣

∣ ≤
√

1/(δri).
The objective is to design a control law u(k) such that the closed-

loop system is locally stable. To this end, the following definition of sta-
bility will be considered to deal with persistent disturbances (KHALIL,
2003).

Definition 5.1 (UB stability) Consider system (2.1) with u(k) =
0. The state trajectories x(k) starting from a domain D ⊆ ℜnx are
locally ultimately bounded, if there exist a compact convex set B ⊆ D
and a non-negative scalar k̄ = k̄(x(0)) such that x(k) ∈ B for all k ≥ k̄.
Moreover, if D ≡ ℜnx then the system is globally ultimately bounded.

In view of the above definition, the set B will be referred as
the ultimate bounded set (or simply UB set, which by definition is a
positively invariant set). Similarly, the system whose state trajectories
satisfy Definition 5.1 will be referred as locally (or globally) ultimate
bounded stable (or simply UB stable).

The control design to be proposed is based on a FMB approach.
Thus, the nonlinear system (2.1) is represented by means of a N-fuzzy
model using the modeling procedure described in section 2.2. The
resulting fuzzy model is given by the state space equation (2.5), also
reproduced here as

x(k + 1) = A(h(k))x(k)+B(h(k))u(k)+Bw(h(k))w(k)+G(h(k))ϕ(k)
y(k) = Cx(k)

(5.2)
Complementing the fuzzy model description (5.2), the vector of nonli-
nearities ϕ(k) = ϕ(π(k)) ∈ ℜnϕ , with π(k) = Lx(k), verifies (at least
locally) the sector condition (2.3), the T-S domain of validity X is con-
veniently defined by the polyhedral set (2.17), and the matrix structure
is given by:

[

A(h(k)) B(h(k)) Bw(h(k)) G(h(k))
]

=
nr
∑

i=1

h(i)(k)
[

Ai Bi Bwi Gi

]
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with h(i)(k) representing the membership function of the ith local sub-
model. Notice when assuming h(k) ∈ Ξ that there exists a related
region X of state space containing the origin such that x(k) ∈ X ⇒
h(k) ∈ Ξ.

Now, to properly characterize the closed-loop stability in the pre-
sence of persistent disturbances, let EE (external set) and EI (internal
set) be two distinct sets such that 0 ⊂ EI ⊆ EE ⊂ X . In particular, the
sets EE and EI will be respectively associated to the region of admissi-
ble initial conditions and to the UB set (as explained in Definition 5.1).
In other words, any initial condition starting in the external set EE

will converge to the internal set EI in finite time. Moreover, the set
EI is positively invariant, that is, if a trajectory x(k) ∈ EI , for some
k ≥ k̄ with k̄ being a positive integer, then x(k) ∈ EI for all k ≥ k̄
(TARBOURIECH et al., 2011b).

For illustrative purposes, Figure 23 shows a state trajectory
(black solid line) starting in the external set EE (magenta dashed line)
and converging to the internal set EI (green dot dashed line) which is
positively invariant. Notice that the system trajectory evolves within
the T-S domain of validity X (cyan solid line).

X

EE

EI

IC

x

Figure 23 – Stability characterization for a persistent disturbance and
a nonzero initial condition (IC).
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In the sequel, two different problems of interest will be esta-
blished. The first problem assumes that the normalized membership
functions vector h(k) is available online to implement a state feedback
controller. The second one considers that only a part h̃(k) of the mem-
bership functions vector h(k) is available online to the controller which
is employed for scheduling a dynamic output feedback controller.

5.1.1 Nonlinear State Feedback Design

Assume that the output matrix C is column full-rank1. Thus,
h(k) and ϕ(k) can be made available online to the controller, see Klug
et al. (2014), Klug, Castelan & Coutinho (2015a). In this case, the
following control law will be considered:

u(k) = K(h(k))x(k) + Γ(h(k))ϕ(k) (5.3)

where

[

K(h(k)) Γ(h(k))
]

=
nr
∑

i=1

h(i)(k)
[

Ki Γi

]

, with Ki ∈ℜnu×nx , Γi ∈ℜnu×nϕ .

Then, similarly to the previous chapter, the closed-loop T-S fuzzy
model can be described as follows:

x(k + 1) = A(h(k))x(k) + Bw(h(k))w(k) + G(h(k))ϕ(k) (5.4)

with
A(h(k)) = A(h(k)) + B(h(k))K(h(k)) and

G(h(k)) = G(h(k)) + B(h(k))Γ(h(k))

Note that A(h(k)) and G(h(k)) can be generically written in the follo-
wing form through summation properties:

T (h(k)) =
nr
∑

i=1

nr
∑

j=i

(1 + ςij)h(i)(k)h(j)(k)
Ti + XiYj + Tj + XjYi

2

where the tuple (T ,T,X,Y ) represents either (A,A,B,K) or (G,G,B,Γ),
and ςij is binary a variable such that (as defined in (4.6) and (4.7))

1Hence, the state vector can be reconstructed from the measurements by means
of x(k) = (C′C)−1C′y(k).
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ςij =

{

1 if i 6= j,
0 otherwise.

Hence, the state feedback design problem can be established as
follows:

Problem 5.2 Determine Ki and Γi, for i = 1, ..., nr, and associated
sets EI and EE such that for any initial condition x(0)∈EE ⊆ X and any
disturbance w(k) ∈ W the state trajectory x(k) of system (5.4) remains
inside EE, converges to EI in some finite time k̄ and x(k) ∈ EI , ∀ k ≥ k̄.

5.1.2 Dynamic Output Feedback

Assume that the membership functions vector h(k) are depen-
dent on the measurable states, i.e., h(k) = h(y(k)). In this setup,
consider the following nonlinear dynamic output feedback controller:

xc(k + 1) = Ac(h(k))xc(k) + Bc(h(k))uc(k)
yc(k) = Cc(h(k))xc(k) + Dc(h(k))uc(k)

(5.5)

where xc(k) ∈ ℜnx is the controller state and the controller matrices
are as follows

[

Ac(h(k)) Bc(h(k))
]

=
r
∑

i=1

r
∑

j=i

(1+ςij)h(i)(k)h(j)(k)

[

Acij

2

Bcij

2

]

[

Cc(h(k)) Dc(h(k))
]

=
r
∑

i=1

h(i)(k)
[

Cci Dci

]

.

(5.6)
Notice that the assumption h(k) = h(y(k)) is necessary to im-

plement any output feedback controller based on the PDC strategy, in
which the membership functions are shared between the fuzzy model
and controller. Nevertheless, the N-fuzzy approach can be exploited to
deal with unmeasurable nonlinearities (contrasting with the classical
fuzzy modeling). More specifically, the vector ϕ(k) = ϕ(π(k)) ∈ ℜnϕ ,
with π(k) = Lx(k), can embed all nonlinearities which are functions
of unmeasurable states (further details will be given in the section of
experiments).

Thus, defining the augmented state vector ξ(k) =
[

x
′

(k) x′
c(k)

]

′

,
the following closed-loop system is obtained:

ξ(k + 1) = [A(h(k)) + B(h(k))K(h(k))] ξ(k)

+ G(h(k))ϕ(Lξ(k)) + Bw(h(k))w(k) (5.7)
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with A(·),B(·),Bw(·),G(·),K(·) and L(·) given by:

A(h(k)) =

[

A(h(k)) 0
Bc(h(k))C Ac(h(k))

]

, B(h(k)) =

[

B(h(k))
0

]

,

Bw(h(k)) =

[

Bw(h(k))
0

]

, G(h(k)) =

[

G(h(k))
0

]

,

K(h(k)) =
[

Dc(h(k))C Cc(h(k))
]

and L =
[

L 0
]

.

In light of the above, the problem of output feedback design can
be formulated as follows:

Problem 5.3 Determine the controller matrices Acij, Bcij, Cci and

Dci, for i = 1, ..., nr, and associated sets E{a}
I and E{a}

E such that for

any initial condition ξ(0) ∈ E{a}
E ⊆ X {a} and any disturbance w(k) ∈ W

the state trajectory ξ(k) of system (5.7) remains inside E{a}
E , converges

to the set E{a}
I in some finite time k̄ and ξ(k) ∈ E{a}

I , ∀k ≥ k̄.

Remark 5.4 It is often of interest when solving Problems 5.2 and 5.3
that the controller matrices are designed in order to maximize the exter-
nal ellipsoidal set and to minimize the internal ellipsoidal set. Notice
in the case of dynamic output feedback that it might be of interest to

respectively minimize and maximize the orthogonal projections of E{a}
I

and E{a}
E over the x(k)-plane.

Remark 5.5 The approach to be proposed can be applied to deal with
some non-smooth nonlinearities such as dead zone, backlash and hys-
teresis, since they can be modeled by means of sector nonlinearities and
amplitude bounded disturbances (DILDA; JUNGERS; CASTELAN, 2014).

Before ending this section, it is introduced in the following a key
result which will be instrumental to derive solutions to Problems 5.2
and 5.3. To this end, consider the following fuzzy Lyapunov-like func-
tions (FLFs):

VE(x(k), h(k)) : X × Ξ → ℜ+, VI(x(k), h(k)) : X × Ξ → ℜ+,

VE,I(0, h(k)) = 0, ∀ h(k) ∈ Ξ, (5.8)

and the following associated sets

EE = {x(k) ∈ X : VE(x(k), h(k)) ≤ 1, ∀ h(k) ∈ Ξ} ,

EI = {x(k) ∈ X : VI(x(k), h(k)) ≤ 1, ∀ h(k) ∈ Ξ} .
(5.9)
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Then, the following lemma characterizes the stability conditions
to ensure the UB stability of system (2.1).

Lemma 5.6 Consider the system defined in (2.1), the sets defined in
(5.9) such that EI ⊆ EE ⊆ X , and the FLFs defined in (5.8). Suppose
the following conditions are satisfied for all w(k) ∈ W and h(k) ∈ Ξ:

∆VE(x(k), h(k)) < 0, ∀ x(k) ∈ EE\EI (5.10)

∆VI(x(k), h(k)) + VI(x(k), h(k)) ≤ 1, ∀ x(k) ∈ EI (5.11)

with ∆VE,I(x(k), h(k)) , VE,I(x(k+1), h(k+1))−VE,I(x(k), h(k)) < 0.

Then, the following holds:

i) The system (2.1) is locally UB stable;

ii) EI is an UB set;

iii) For any x(0) ∈ EE and w(k) ∈ W, there exists a k̄ ∈ Z+ such that
the state trajectory x(k) ∈ EI , ∀ k ≥ k̄.

Proof The condition (5.10) ensures that any state trajectory starting
in EE\EI converges towards EI in finite time (VIDYASAGAR, 2002).
Furthermore, the condition (5.11) implies that if x(k) ∈ EI then x(k +
1) ∈ EI , that is, the set EI is positive invariant. The rest of this proof
follows straightforwardly from Definition 5.1.

5.2 CONTROL DESIGN

In this section, LMI-based solutions are proposed for designing
the control laws in (5.3) and (5.5) which locally ensures the UB stabi-
lity of the nonlinear closed-loop system described by means of N-fuzzy
models (5.4) and (5.7).

5.2.1 State Feedback Design

Consider that the FLFs in (5.8) are defined as follows:

VE(x(k), h(k)) = x
′

(k)Q−1(h(k))x(k),

VI(x(k), h(k)) = x
′

(k)W −1(h(k))x(k), (5.12)
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with the matrices Q(·) and W (·) being as follows:

Q(h(k)) =
nr
∑

i=1

h(i)(k)Qi , W (h(k)) =
nr
∑

i=1

h(i)(k)Wi , (5.13)

where Qi, Wi ∈ ℜnx×nx are symmetric positive defined matrices to be
determined for all i = 1, . . . , nr.

In light of the above, the sets EE and EI are defined as the
intersection of nr ellipsoidal sets (HU; Z.; M., 2002; JUNGERS; CASTELAN,
2011) formed by the matrices W −1

i and Q−1
i as detailed below

EE
△
=

⋂

i∈{1,...nr}

E(Q−1
i ) , EI

△
=

⋂

i∈{1,...nr}

E(W −1
i ) , (5.14)

where the 2nr ellipsoidal sets E(Q−1
i ) and E(W −1

i ) are as follows

E(Q−1
i ) =

{

x(k) ∈ ℜnx : x
′

(k)Q−1
i x(k) ≤ 1

}

,

E(W −1
i ) =

{

x(k) ∈ ℜnx : x
′

(k)W −1
i x(k) ≤ 1

}

.

Notice that additionally to the conditions of Lemma 5.6, the constraint
EE ⊂ X has also to be considered to guarantee the convexity of the
N-fuzzy model in (5.4).

In the sequel, sufficient design conditions based on LMI cons-
traints are proposed to determine the control law in (5.3) which locally
stabilizes the nonlinear system (2.1) subject to amplitude bounded dis-
turbances.

Theorem 5.7 Consider the system in (2.1) with (5.1), its fuzzy model
in (5.2), and the control law in (5.3). Let τ1 and τ3 be two given
positive scalars with τ3 ∈ (0, 1). Suppose there exist symmetric positive
definite matrices (Qi, Wi) ∈ ℜnx×nx , i = 1, . . . , nr; a diagonal positive
definite matrix ∆ ∈ ℜnϕ×nϕ ; matrices Y1i ∈ ℜnu×nx , Y2i ∈ ℜnu×nϕ ,
i = 1, . . . , nr and U ∈ ℜnx×nx ; and positive scalars τ2 and τ4; that
satisfy Qi ≥ Wi, i = 1, . . . , nr, and the following LMIs:

















−Qq Π1
ij Π3

ij

Bwi + Bwj

2
0

⋆ Π2
ij U

′

L
′

Ω 0 U
′

τ1

⋆ ⋆ −2∆ 0 0
⋆ ⋆ ⋆ −τ2R 0

⋆ ⋆ ⋆ ⋆ −τ1

(

Wi + Wj

2

)

















< 0

∀ q, i = 1, . . . , nr and j = i, . . . , nr (5.15)
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−Wq Π1
ij Π3

ij

Bwi + Bwj

2

⋆ τ3

(

Wi + Wj

2
− U − U

′
)

U
′

L
′

Ω 0

⋆ ⋆ −2∆ 0
⋆ ⋆ ⋆ −τ4R











≤ 0

∀ q, i = 1, . . . , nr and j = i, . . . , nr (5.16)

δ−1τ2 − τ1 < 0 (5.17)

τ3 + τ4δ−1 − 1 ≤ 0 (5.18)

−φ2
{ℓ} + N{ℓ}QiN

′

{ℓ} ≤ 0, ∀ i = 1, . . . , nr and ℓ = 1, . . . , nφ (5.19)

where
Π1

ij = 0.5 (AiU + BiY1j + AjU + BjY1i) ,

Π2
ij = 0.5 (Qi + Qj) − U − U

′

,

Π3
ij = 0.5 (Gi∆ + BiY2j + Gj∆ + BjY2i) .

Let Ki = Y1iU
−1 and Γi = Y2i∆−1 for i = 1, . . . , nr. Then, the follo-

wing holds:

i) The closed-loop system consisting of (2.1) and (5.3) is locally UB
stable;

ii) EI as defined in (5.14) is an UB set;

iii) For any w(k) ∈ W and x(0) ∈ EE, with EE as defined in (5.14),
there exists a k̄ ∈ Z+ such that x(k) ∈ EI , ∀ k ≥ k̄.

Proof The condition Qi ≥ Wi implies that EI ⊆ EE. Now, assume
that (5.15) and (5.16) are verified for all q, i = 1, . . . , nr and j =
i, . . . , nr. Replace Y1i and Y2i respectively by KiU and Γi∆. Multiply
the resulting inequalities successively by h(i)(k), h(j)(k), h(q)(k + 1),
and sum up on i, q = 1, . . . , nr and j = i, . . . , nr. Thus, the inequalities
M1(h(k)) < 0 and M2(h(k)) < 0 holds if h(k) ∈ Ξ with

M1(h)=













−Q(h+) A(h)U G(h)∆ Bw(h) 0
⋆ −U

′

Q−1(h)U U
′

L
′

Ω 0 U
′

τ1

⋆ ⋆ −2∆ 0 0
⋆ ⋆ ⋆ −τ2R 0
⋆ ⋆ ⋆ ⋆ −τ1W (h)













,

M2(h)=









−W (h+) A(h)U G(h)∆ Bw(h)
⋆ −τ3U

′

W (h)U U
′

L
′

Ω 0
⋆ ⋆ −2∆ 0
⋆ ⋆ ⋆ −τ4R









,
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and the shorthands h = h(k) and h+ = h(k+1). Note that the matrices
Q(h), W (h) and Bw(h) can be written as (SILVA et al., 2014)





Q(h)
W (h)
Bw(h)



=
nr
∑

i=1

nr
∑

j=i

(1 + ςij)h(i)(k)h(j)(k)





1

2





Qi + Qj

Wi + Wj

Bwi + Bwj







,

and that −U ′Q−1(h)U ≤ Q(h) − U ′ − U is verified since U is full rank
from the (2, 2) block of the left-hand side of (5.15) and (5.16).

Further, consider the congruence transformations ΠM1(h)Π
′

and
ΠM2(h)Π

′

with Π = diag{I, (U
′

)−1, ∆, I, I}. In the sequel, applying
the Schur’s complement (twice for ΠM1(h)Π

′

) yields:

MS1(h) = ϑ
′

1(k)Q−1(h+)ϑ1(k)

+





−Q−1(h) + τ1W −1(h) L
′

Ω∆−1 0
⋆ −2∆−1 0
⋆ ⋆ −τ2R



 < 0 (5.20)

MS2(h) = ϑ
′

1(k)W −1(h+)ϑ1(k)

+





−τ3W −1(h) L
′

Ω∆−1 0
⋆ −2∆−1 0
⋆ ⋆ −τ4R



 < 0 (5.21)

with ϑ1(k) =
[

A(h(k)) G(h(k)) Bw(h(k))
]

. Now, let ϑ2(k) =
[

x
′

(k) w
′

(k) ϕ
′

(k)
]′

. Then, in view of (5.20) and (5.21), it is ob-
tained the following:

ϑ
′

2(k)MS1(h(k))ϑ2(k)=∆VEE
(x(k), h(k))−τ1(1−x

′

(k)W −1(h(k))x(k))

− 2ϕ
′

(k)∆−1(ϕ(k) − ΩLx(k)) < 0 (5.22)

ϑ
′

2(k)MS1(h(k))ϑ2(k)=∆VEI
(x(k), h(k)) + VEI

(x(k), h(k))

− τ3(x
′

(k)W −1(h(k))x(k) − 1) − 2ϕ
′

(k)∆−1(ϕ(k) − ΩLx(k)) < 1 ,
(5.23)

Hence, by considering the S-procedure, the condition (5.22) with
(5.17) implies that condition (5.10) from Lemma 5.6 is satisfied whe-
never: i) h(k) ∈ Ξ; ii) the sector condition (2.3) is verified; and iii)
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assuming that x(k) does not leave X , for all k ≥ 0. The same proce-
dure can be extended to (5.23) with (5.18) resulting in the verification
of (5.11).

Now, is required to show that x(k) ∈ X , for all k ≥ 0, and
consequently h(k) ∈ Ξ. To this end, assume that (5.19) is verified.
Then, multiplying (5.19) by h(i)(k) and summing up on i = 1, . . . , nr

leads to:
−φ2

{ℓ} + N{ℓ}Q(h(k))N
′

{ℓ} ≤ 0,

which is equivalent to (see Klug, Castelan & Coutinho (2015a))

N
′

{ℓ}(φ2
{ℓ})−1N{ℓ} − Q−1(h(k)) ≤ 0.

Pre- and post-multiplying the above respectively by x
′

(k) and x(k) and
considering the S-procedure leads to:

x
′

(k)N
′

{ℓ}φ−2
{ℓ}N{ℓ}x(k) ≤ 1, ∀ x(k) ∈ EE

That is, E(Q−1
i ) ⊂ X , ∀i = 1, ..., nr. Therefore it is ensured that x(k)

does not leave X , for all k ≥ 0, which concludes the proof.

Notice that the conditions of Theorem 5.7 are LMI constraints
if the positive scalars τ1 and τ3 are given a priori. To obtain a less
conservative result, a griding technique can be applied to determine
these parameters taking into account that τ3 ∈]0, 1[ due to the scalar
inequality in (5.18). To avoid a possible large computational effort, it is
possible to constraint the sets EE and EI to have the same shape (i.e.,
the set EE is a scaled version of EI). As a result, the only parameter
to be searched is τ1 in a bounded space. Thus, the sets EE and EI are
redefined as follows:

EE
△
=

⋂

i∈{1,...nr}

E
(

Q−1
i , c−1

)

, EI
△
=

⋂

i∈{1,...nr}

E
(

Q−1
i , 1

)

, (5.24)

where the nr ellipsoidal sets E
(

Q−1
i , c−1

)

are as follows:

E
(

Q−1
i , c−1

)

=
{

x(k) ∈ ℜn : x
′

(k)Q−1
i x(k) ≤ c−1 , c−1 ≥ 1

}

(5.25)

for i = 1, . . . , nr and with c being a parameter defining the size of EE .
Therefore, the stabilization conditions proposed in Theorem 5.7

are simplified to the following result.
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Corollary 5.8 Consider the system in (2.1) with (5.1), its fuzzy model
in (5.2), and the control law in (5.3). Let τ1 be a given positive scalar
such that 0 < τ1 < 1. Suppose there exist symmetric positive definite
matrices Qi ∈ ℜnx×nx , i = 1, . . . , nr; a diagonal positive definite ma-
trix ∆ ∈ ℜnϕ×nϕ ; matrices Y1i ∈ ℜnu×nx , Y2i ∈ ℜnu×nϕ , i = 1, . . . , nr,
and U ∈ ℜnx×nx ; and positive scalars τ2 and c with 0 < c ≤ 1; that
satisfy the following LMIs:











−Qq
AiU + BiY1j + AjU + BjY1i

2
Π3

ij

Bwi + Bwj

2

⋆ (1 − τ1)
(

Qi + Qj

2
− U − U

′
)

U
′

L
′

Ω 0

⋆ ⋆ −2∆ 0
⋆ ⋆ ⋆ −τ2R











< 0

∀ q, i = 1, . . . , nr and j = i, . . . , nr (5.26)

τ2 − δτ1 < 0 (5.27)

−cφ2
{ℓ} + N{ℓ}QiN

′

{ℓ} ≤ 0, ∀ i = 1, . . . , nr and ℓ = 1, . . . , nφ (5.28)

Let Ki = Y1iU
−1 and Γi = Y2i∆−1 for i = 1, . . . , nr. Then, the

following holds:

i) The closed-loop system consisting of (2.1) and (5.3) is locally UB
stable;

ii) EI as defined in (5.24) with (5.25) is an UB set;

iii) For any w(k) ∈ W and x(0) ∈ EE, with EE as defined in (5.24)
with (5.25), there exists a k̄ ∈ Z+ such that x(k) ∈ EI , ∀ k ≥ k̄.

Proof This proof follows similar steps to those employed in Theo-
rem 5.7 and thus will be omitted.

Observe that Corollary 5.8 assumes the same shape for the exter-
nal and internal sets. Hence, a single LMI condition ensures that (5.10)
and (5.11) from Lemma 5.6 are satisfied. Also, it should be noted that
the (2, 2) block of (5.26) arises from the term −(1 − τ1)Q−1(h(k)) and
thus 0 < τ1 < 1. Moreover, Corollary 5.8 can be applied to obtain
an estimate of τ1 for the solution of Theorem 5.7 likely yielding a less
conservative result.

Remark 5.9 Either Theorem 5.7 or Corollary 5.8 can be applied to
nonlinear systems represented by classical T-S fuzzy models ( i.e., with
ϕ(k) ≡ 0) by eliminating the third row and column blocks of the matrix
on the left-hand side of (5.15) and (5.16), or (5.26), respectively.
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5.2.2 Dynamic Output Feedback

Let the following FLF’s:

VI(ξ(k), h(k)) = ξ
′

(k)W−1(h(k))ξ(k),

VE(ξ(k), h(k)) = ξ
′

(k)Q−1(h(k))ξ(k), (5.29)

with

W(h(k)) =
nr
∑

i=1

h(i)(k)Wi , Q(h(k)) =
nr
∑

i=1

h(i)(k)Qi , (5.30)

and Wi,Qi ∈ ℜ2nx×2nx are symmetric matrices to be determined for
i = 1, . . . , nr.

Accordingly, the internal and external sets characterizing the UB
stability are redefined as follows:

E{a}
I ,

⋂

i∈{1,...nr}

E(W−1
i ) , E{a}

E ,
⋂

i∈{1,...nr}

E(Q−1
i ) , (5.31)

with E(W−1
i ) and E(Q−1

i ) being ellipsoidal sets as defined below:

E(W−1
i ) =

{

ξ(k) ∈ ℜ2nx : ξ
′

(k)W−1
i ξ(k) ≤ 1

}

,

E(Q−1
i ) =

{

ξ(k) ∈ ℜ2nx : ξ
′

(k)Q−1
i ξ(k) ≤ 1

}

.
(5.32)

Also, the T-S domain of validity is redefined in terms of the augmented
space (equal to the definition (3.10) in Chapter 3):

X {a} = {ξ(k) ∈ ℜ2nx : |Nξ(k)| � φ}, (5.33)

where N = [ N 0nφ×nx
].

Similarly to the procedure performed in Chapter 3, section 3.3,
consider nx-dimensional real square matrices X, Y , P and Z such that
the following matrices are nonsingular:

U =

[

X •
Z •

]

, U−1 =

[

Y •
P •

]

, Θ =

[

Y In

P 0

]

, (5.34)

with • denoting any real matrix with compatible dimensions. In view
of the above definitions, note that:
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UΘ =

[

In X
0 Z

]

.

Hence, the parametrization Θ′UΘ yields:

Û = Θ′UΘ =

[

Y ′ T ′

In X

]

, T ′ = Y ′X + P ′Z . (5.35)

Furthermore, partitioning the matrices Qi and Wi as follows:

Qi =

[

Q11i Q12i

⋆ Q22i

]

, Wi =

[

W11i W12i

⋆ W22i

]

leads to :

Q̂i =Θ′QiΘ=





Y ′Q11iY + P ′Q′
12iY +

Y ′Q12iP + P ′Q22iP
Y ′Q11i+
P ′Q′

12i

⋆ Q11i



=

[

Q̂11i Q̂12i

⋆ Q̂22i

]

.

Ŵi =Θ′WiΘ=





Y ′W11iY + P ′W ′
12iY +

Y ′W12iP + P ′W22iP
Y ′W11i+
P ′W ′

12i

⋆ W11i



=

[

Ŵ11i Ŵ12i

⋆ Ŵ22i

]

.

Then, the following result is proposed to determine the matrices
of the dynamic output feedback controller (5.5).

Theorem 5.10 Consider the nonlinear system in (2.1), its N-fuzzy
representation in (5.2) with h(k) = h(y(k)), and the controller defined
in (5.5). Let the positive scalars τ1 and τ3 ∈ (0, 1), and a diagonal
positive definite matrix ∆ ∈ ℜnϕ×nϕ . Suppose there exist symmetric
positive definite matrices Q̂i, Ŵi ∈ ℜ2nx×2nx , i = 1, . . . , nr; matrices
X, Y , T , Âij, B̂ij, Ĉi, D̂i of appropriate dimensions; and positive

scalars τ2 and τ4; that satisfy Q̂i ≥ Ŵi and the following LMIs:





































−Q̂q Π1
ij Π2

ij Π3
ij 0

⋆
Q̂i+Q̂j

2
−Û−Û

′
L

′

Ω

X
′

L
′

Ω

0 τ1Û
′

⋆ ⋆
−2∆

0

0

−τ2R

0

⋆ ⋆ ⋆ ⋆ −τ1

(

Ŵi+Ŵj

2

)





































< 0

∀ q, i = 1, ..., nr and j = i, ..., nr (5.36)
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−τ1 + τ2δ−1 < 0 (5.37)





























−Ŵq Π1
ij Π2

ij Π3
ij

⋆ τ3

(

Ŵi + Ŵj

2
− Û − Û

′

)

L
′

Ω

X
′

L
′

Ω

0

⋆ ⋆
−2∆

0

0

−τ4R





























≤ 0

∀ q, i = 1, ..., nr and j = i, ..., nr (5.38)

τ3 + τ4δ−1 − 1 ≤ 0 (5.39)










−Q̂i + Û + Û
′ N

′

{ℓ}

(NX)
′

{ℓ}

⋆ φ2
{ℓ}











> 0,

∀ i = 1, ..., nr and ℓ = 1, ..., nφ (5.40)

where Û is as in (5.35) and

Π1
ij =







Y
′

(Ai + Aj) + B̂ijC

2

Âij

2
Ai + Aj + (BiD̂j + BjD̂i)C

2

(Ai + Aj)X + BiĈj + BjĈi

2






,

Π2
ij =





Y
′
(

Gi + Gj

2

)

∆
(

Gi + Gj

2

)

∆



 ,

Π3
ij =

[

Bwi + Bwj

2
0

]

.

Let P be any nonsingular matrix and define the following matrices:

Z = (P ′)−1(T ′ − Y ′X), Dci=D̂i

Cci = (Ĉi − DciCX)Z−1,

Bcij = (P ′)−1
[

B̂ij − Y ′(BiDcj + BjDci)
]

,

Acij = (P ′)−1
[

Âij −Y ′(Ai + Aj)X−B̂ijCX−Y ′(BiCcj +BjCci)Z
]

Z−1,

(5.41)
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with i, j = 1, . . . , nr. Then, the following holds:

i) The closed-loop system consisting of (2.1) and (5.5) is locally UB
stable;

ii) E{a}
I as defined in (5.31) with (5.32) is an UB set;

iii) For any w(k) ∈ W and x(0) ∈ E{a}
E , with E{a}

E as defined in (5.31)

with (5.32), there exists a k̄ ∈ Z+ such that x(k) ∈ E{a}
I , ∀ k ≥ k̄.

Proof Suppose there exists a solution to (5.36)-(5.40) for all q, i =
1, . . . , nr, j = i, . . . , nr and l = 1, . . . , nφ. Then, from the (2, 2) block

of (5.36), it follows that Û > 0. Hence, in view of (5.35), the matrices
X, Y and (T ′ −Y ′X) are nonsingular. As a result, for any nonsingular
P , the matrices defined in (5.41) are well-defined.

Next, consider the matrix inequalities in (5.36) and (5.38), and
replace the matrices Âij, B̂ij, Ĉi and D̂i by their following equivalent
representations:

Ĉi = DciCX + CciZ,

D̂i = Dci,

B̂ij = Y
′

(BiDcj + BjDci) + W
′

Bcij ,

Âij = Y
′

(Ai + Aj)X + B̂ijCX + Y
′

(BiCcj + BjCci)Z + W
′

AcijZ.

Now, apply the congruence transformations diag{(Θ′)−1, (Θ′)−1, I, I,
(Θ′)−1} and diag{(Θ′)−1, (Θ′)−1, I, I}, respectively. Multiplying the re-
sulting matrix inequalities successively by h(i)(k), h(j)(k), h(q)(k + 1)
and summing up on i, q = 1, . . . , nr and j = i, . . . , nr, the following
hold for all h(k) ∈ Ξ:

M1(h) =













−Q(h+) Af (h)U G(h)∆ Bw(h) 0
⋆ −U

′

Q(h)U U
′

L
′

Ω 0 τ1U
′

⋆ ⋆ −2∆ 0 0
⋆ ⋆ ⋆ −τ2R 0
⋆ ⋆ ⋆ ⋆ τ1W(h)













< 0 ,

M2(h) =









−W(h+) Af (h)U G(h)∆ Bw(h)
⋆ −τ3U

′

W(h)U U
′

L
′

Ω 0
⋆ ⋆ −2∆ 0
⋆ ⋆ ⋆ −τ4R









≤ 0,
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with Af (h) = A(h) +B(h)K(h) and the shorthands h = h(k) and h+ =
h(k + 1).

The rest of this proof follows from the proof of Theorem 4.4.

5.3 DESIGN ISSUES

In this section the controllers design based on the previous results
is proposed through optimization problems, which aims: i) to obtain
the smallest UB set EI ; or ii) to obtain the set of initial conditions EE

that cover as much as possible the domain of validity X ; and iii) to
consider the two previous objectives into a multiobjective problem.

5.3.1 State and Sector Nonlinearities Feedback Design

5.3.1.1 Minimization of EI

In this case the objective consists in minimizing the UB set EI .
For this purpose the set EI will be included in the sphere with radius

equal to
√

γ, which will be minimized. Then, EI ⊆ E
(

1

γ
Inx

)

⇔

x
′

(k)
1

γ
Inx

x(k) ≤ 1 ∀ x
′

(k)W −1(h(k))x(k) ≤ 1, which can be equiva-

lently represented by (DILDA; JUNGERS; CASTELAN, 2014):

[

γInx
Wi

⋆ Wi

]

≥ 0

∀ i = 1, ..., nr

(5.42)

Thus, the following convex optimization problem is proposed:

min γ
Qi, Wi, ∆, Y1i, Y2i, U, τ2, τ4

subject to
LMIs (5.15), (5.16), (5.17) , (5.18), (5.19) and (5.42).

(5.43)

5.3.1.2 Maximization of EE

Ideally, the set of initial conditions should be coincident with the
domain of validity X . However, to ensure that the system trajectories
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do not evolve outside this domain (where T-S model convexity cannot
be guaranteed), the set EE represents the admissible region of initial
conditions. In this way, the objective is to maximize the set EE ⊆ X .
For this purpose, it is considered that X can be described by

X = Co {vσ ∈ ℜnx , σ = 1, ..., nσ}

where the set of vectors {vσ ∈ ℜnx} contain the information nece-
ssary to characterize the shape of X . Then, the objective consists in
maximizing the factor β such that the inclusion βX ⊆ EE is verified.
Considering µ = 1/β2, this inclusion is equivalent to

[

µ v
′

σ

⋆ Qi

]

≥ 0

∀ i = 1, ..., nr and σ = 1, ..., nσ

(5.44)

In this case, the following convex optimization problem is proposed:

min µ
Qi, Wi, ∆, Y1i, Y2i, U, τ2, τ4

subject to
LMIs (5.15), (5.17), (5.16), (5.18), (5.19) and (5.44).

(5.45)

5.3.1.3 Multiobjective Problem

It is possible to formulate a multiobjective optimization problem
for considering the previous objectives at the cost of losing convexity.
A nonconvex optimization is hard to be solved and approximate con-
vex solutions might be applied to this end. In this way, the following
approximate multiobjective optimization problem is proposed:

min λγ + (1 − λ)µ
Qi, Wi, ∆, Y1i, Y2i, U, τ2, τ4

subject to
LMIs (5.15), (5.17), (5.16), (5.18), (5.19), (5.42) and (5.44).

(5.46)
Observe that the design parameter λ ∈ [0, 1] is responsible for weighting
each objective.

Remark 5.11 Notice that in any of the above optimization problems,
it is required to perform a search in space τ1 × τ3 ∈ ]0, 1[, to select the
values that yields the best optimized objective, as will be illustrated in
the experiments section.
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5.3.2 Dynamic Output Feedback Design

For sake of conciseness, the optimization problems of dynamic
output feedback design will be briefly presented as direct extensions of
those described for the state feedback design.

5.3.2.1 Minimization of E{a}
I

For practical purposes, it is chosen to minimize the set E{a}
I only

in the directions associated with the states of the plant. This can be
accomplished by the following optimization algorithm, in which the

supplementary constraint accounts for EI ⊆ E
(

1

γ

[

In 0
0 0

])

.

min γ

Q̂i, Ŵi, X, Y, T, Âij , B̂ij , Ĉi, D̂i, τ2, τ4

subject to
LMIs (5.36), (5.37), (5.38), (5.39), (5.40) and

[

γInx

[

Inx
X
]

⋆ −Ŵi + Û + Û
′

]

≥ 0.

∀ i = 1, ..., nr

(5.47)

5.3.2.2 Maximization of E{a}
E

As in the previous case, and aiming to maximize the set of initial
conditions in the directions associated with the states of the plant, the
following optimization algorithm is proposed

min µ

Q̂i, Ŵi, X, Y, T, Âij , B̂ij , Ĉi, D̂i, τ2, τ4

subject to
LMIs (5.36), (5.37), (5.38), (5.39), (5.40) and

[

µ
[

v
′

σY v
′

σ

]

⋆ Q̂i

]

≥ 0.

∀ i = 1, ..., nr and σ = 1, ..., nσ

(5.48)
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5.3.2.3 Multiobjetive Problem

The approximate multiobjective optimization problem blends
(5.47) and (5.48) in the same way as in (5.46), with the weighting
parameter λ ∈ [0, 1]. As a result, the following convex optimization
problem is proposed:

min λγ + (1 − λ)µ
Q̂i, Ŵi, X, Y, T, Âij , B̂ij , Ĉi, D̂i, τ2, τ4

subject to
LMIs (5.36), (5.37), (5.38), (5.39), (5.40),

[

γInx

[

Inx
X
]

⋆ −Ŵi + Û + Û
′

]

≥ 0

∀ i=1, ..., nr

and

[

µ
[

v
′

σY v
′

σ

]

⋆ Q̂i

]

≥ 0.

∀ i=1, ..., nr and σ = 1, ..., nσ

(5.49)

5.4 EXPERIMENTS

Consider the two dimensional nonlinear system presented in Ap-
pendix B, section B.4. The state space representation of the system is
given by:

x(1)(k + 1) =
3

10
x(1)(k)−

1

2
x(2)(k)−

1

10
x

2
(1)(k)+

1

4
x(1)(k)x(2)(k)

+
3

10
x(2)(k)(1 + sin(x(2)(k)))+

7

10
u(k)+

1

20
x(1)(k)u(k)

−
1

2
w(1)(k)−

1

4
x(1)(k)w(1)(k)−

11

20
w(2)(k)+

7

40
x(1)(k)w(2)(k)

x(2)(k + 1) =
1

20
x(1)(k)−

3

10
x(2)(k)+

9

40
x

2
(1)(k)−

1

10
x(1)(k)x(2)(k)

−
1

20
u(k)+

1

40
x(1)(k)u(k)+

9

10
w(1)(k)+

9

20
x(1)(k)w(1)(k)

+
1

20
w(2)(k)+

19

40
x(1)(k)w(2)(k)

(5.50)

The above nonlinear system will be used to demonstrate the
potential of the described approach as a control design tool for nonlinear
discrete-time systems subject to persistent disturbances. To this end,
it is considered that the states are constrained in the domain defined
by |x(1)(k)| ≤ 2 and |x(2)(k)| ≤ 1.5, and that disturbance vector lies
inside the set W, in (5.1), defined by δ = 20 and R = diag{13.88, 20}.
Figure 24 shows a particular disturbance vector wk ∈ W used in the
simulations.
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Figure 24 – Disturbance signal for numerical example

i) Classical T-S Modeling: For this case the considered nonlinear
system is represented by the classical T-S fuzzy model given in (B.8),
composed by four linear local rules.

In the sequel, observing the particularies in Remark 5.9, it is po-
ssible to apply the optimization problem (5.46) to compute a state feed-
back control law u(k) = K(h(k))x(k), with K(h(k)) =

∑r
i=1 h(i)(k)Ki.

By choosing the weighting parameter λ = 0.5, and by gridding the
space τ1 × τ3 ∈ ]0, 1[ with steps of 0.1, the best solution was found
for the pair {τ1, τ3} = {0.1, 0.9} with the respective lowest value of
γ = 0.9949 and highest value of β = 0.6799. In other words, this
specific case combines the smallest ellipsoidal set EI (the UB set) and
the greatest ellipsoidal set EE (initial conditions set) retrieved from the
multiobjective algorithm (5.46) and the gridding search strategy. The
corresponding gain matrices are:

K1 =
[

−0.8255 1.4385
]

, K2 =
[

−0.8605 0.5587
]

,

K3 =
[

−0.1097 −0.0704
]

, K4 =
[

−0.1097 −0.8187
]

.

In Figure 25, it is observed the two regions and some closed-loop
trajectories obtained for the specific allowed disturbance in Figure 24.
It can be noticed that for every initial condition (represented by a red
square) in EE (represented by a dashed line in magenta) the corres-
ponding trajectory, as desired, evolve inside of X (represented by a
continuous line in cyan) and, in a finite time, converge to the positively
invariant UB set EI (represented by a dashed dotted line in green).
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Figure 25 – Ellipsoidal sets and trajectories for example i)

ii) N-Fuzzy Modeling: For this case the considered nonlinear
systems is represented by the N-fuzzy model given in (B.10), composed
by two nonlinear local rules. As can be noted, the number of rules
for representing the nonlinear system was reduced by 50%, without
compromissing the exactness of the model.

In the sequel, it is possible to apply the multiobjective optimiza-
tion problem (5.46) to compute a nonlinear state feedback control law
as in (5.3). Choosing the weighting parameter λ = 0.5, and by gridding
the space τ1 × τ3 ∈ ]0, 1[ with steps of 0.1, the best solution was found,
as the previous case, for the pair {τ1, τ3} = {0.1, 0.9}, with the respec-
tive lowest value of γ = 0.9992 and highest value of β = 0.6795. It
should be highlighted that the solution time to apply the optimization
problem was reduced from 2.993s to 1.258s, as a result of lower numeri-
cal complexity provided by the N-fuzzy model. The corresponding gain
matrices are:

K1 =
[

−0.9021 1.4173
]

, K2 =
[

−0.4850 −0.6688
]

,

Γ1 = −1.6381, Γ2 = −1.2500.

Similarly to the state feedback case for classical fuzzy models, it
is possible to observe in Figure 26 the two regions and some closed-loop
trajectories obtained for the specific allowed disturbance in Figure 24.
As in the previous case, it can be noticed that for every initial condition
in EE , the corresponding trajectory, as desired, evolve inside of X and,
in a finite time, converge to the positively invariant UB set EI . For
the specific initial condition x(0) = [−1.341 −1]

′

, the closed-loop state
trajectory is shown in Figure 27.
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Figure 26 – Ellipsoidal sets and trajectories for example ii)
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Figure 27 – State trajectories for example ii)

At last, by comparing the associated values of γ and β, and by
comparing Figures 25 and 26, it can be seen that there is no significant
qualitative difference between the two solution.

iii) Output Feedback: In previous numerical experiments, the
state variables x(1)(k) and x(2)(k) were assumed to be measurable, allo-
wing the implementation of fuzzy control laws that depend of h(k) =
h(x(1)(k), x(2)(k)) when designed from the classical T-S model, or of
h(k) = h(x(1)(k)) and ϕ(k) = ϕ(x(2)(k)) when designed from the N-
fuzzy model.

Next, to show how the proposed dynamic output feedback stra-
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tegy can be useful in practice, it is also considered the N-fuzzy model
in (B.10), but additionally defining the output equation by y(k) =
[1 0] x(k), i.e., the only available signal to compute the control law
is the state x(1)(k). Such additional constraint makes the use of the
classical T-S model not adequate to design and use a fuzzy dynamic
output feedback controller which gains would be dependent of h(k) =
h(x(1)(k), x(2)(k)). However, because the nonlinearity ϕ(x(2)(k)) =
0.3x(2)(k)(1 + sin(x(2)(k))) is sector bounded, even being dependent
of the unmeasurable state x(2)(k), the dynamic output feedback con-
troller in (5.5)-(5.6) can be designed from the N-fuzzy model (B.10),
because in this case h(k) = h(y(k)), and also be used in practice.

Thus, by applying the multiobjective optimization problem (5.49),
with λ = 0.5 and gridding the space τ1 × τ3 ∈ ]0, 1[ and the positive
diagonal matrix ∆, we obtain the lowest value of γ = 1.8345 and the
highest value of β = 0.6228, for the triple {τ1, τ3, ∆} = {0.1, 0.8, 2}.

Figure 28 shows the regions obtained for the above-mentioned
problem and some closed-loop trajectories considering the disturbance
signals described in Figure 24. The regions EE and EI are respectively
the intersection of E{a}

E with the plane formed by the states of the

plant and the orthogonal projection of E{a}
I onto the same subspace

(see Appendix E). It should be noted that despite appearing a certain
conservatism in the size of the set EI , the simulation considers only a
distinct sequence of the disturbance signal w(k). In this way, other
disturbance sequences w(k) could lead the trajectories to evolve closer
to the border of UB set.
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Figure 28 – Ellipsoidal sets and trajectories for example iii)
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In Figure 29, it is shown the state trajectories for the initial
condition x(0) = [1.77 0]

′

and xc(0) = [0 0]
′

. Notice that the over-
all performance is similar to that achieved with the state and sector
nonlinearity feedback.
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Figure 29 – State trajectories for example iii)

5.5 CONCLUDING REMARKS

In this chapter a convex approach for the design of fuzzy con-
trollers that locally stabilizes nonlinear discrete-time systems subject
to amplitude bounded disturbances was presented. Considering fuzzy
Lyapunov functions, optimization problems in terms of LMI constraints
were proposed to design a nonlinear state-feedback control law, which
is a function of the membership fuzzy functions and cone sector non-
linearities, and to design a dynamic output feedback control law. An
interesting characteristic is that the dynamic output case admits the
existence of nonlinearities with unmeasured states in the original sys-
tem, as opposed to the classical literature strategies and the approach
lately proposed in Chapter 3. Additionally, two ellipsoidal sets, EE and
EI , are taken into account, associated respectively to the admissible
region of initial conditions and the concept of ultimate bounded . Both
the theoretical developments and the design strategies consider that
the convexity of the fuzzy models holds in a given domain of validity.
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6 INTERACTIVE SOFTWARE AND HARDWARE
IMPLEMENTATION

Chapters 2, 3, 4 and 5 provide theoretical tools for modeling and
control of nonlinear systems via T-S fuzzy approach. In this chapter,
aiming to assist students, researches and engineers in the control design
of nonlinear systems using FMB techniques, the following results are
proposed:

i) an interactive software for modeling and control of nonlinear sys-
tems, and

ii) a Hardware-in-the-Loop (HIL) implementation is applied to evalu-
ate the digital implementation of T-S fuzzy controllers.

The proposed interactive software is a Matlab-based toolbox freely
available for the scientific community which provides a user-friendly in-
teractive environment for modeling and control of nonlinear systems
considering FMB approaches. The fuzzy toolbox is summarized in the
reference Klug, Castelan & Coutinho (2015a).

The second result of this chapter regards practical aspects of a
digital implementation of T-S fuzzy controllers. More specifically, a
virtual plant runs over an Matlab/Simulink environment and a digital
controller is built over a FPGA (Field Programmable Gate Array) de-
velopment board which communicates with the virtual plant using a
Ethernet network. These results are summarized in the reference Klug
et al. (2014).

This chapter is organized as follows: in Section 6.1, the details
of the interactive software operation, as well as its modules and possi-
ble configurations are discussed. Section 6.2 deals with the hardware
implementation, specifying the programming platform to be used and
the HIL structure, and resulting in a comparative example. Finally,
the conclusions of this chapter are presented in Section 6.3.

6.1 INTERACTIVE SOFTWARE FOR MODELING AND CONTROL
DESIGN

The mathematical modeling of dynamical systems is an impor-
tant research field in automatic control (GUZMAN et al., 2008). An ana-
lytical model is essential for running simulations and designing model-
based control systems, despite, in many cases, not representing every
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aspect of reality. Nevertheless, obtaining at least an approximate repre-
sentation is a good step for deriving a controller that generally performs
better than those obtained with non-formal methods purely based on
empirical knowledge of the process to be controlled. In addition, if the
plant model accurately describes the system dynamics (e.g., through an
exact modeling approach), then the closed-loop stability of the original
system can be guaranteed, at least in a local context.

In light of the above, and considering that the dynamics of practi-
cal control systems are inherently nonlinear, an application was initially
developed in order to automate the process of obtaining an equivalent
representation of a given nonlinear system. The interactivity was the
major premise, so that any change in parameters could be readily visua-
lized, facilitating the understanding and data interpretation by the user.
Currently, this application is published as a Matlab app, accessible from
the web site www.mathworks.com/discovery/matlab-apps.html for re-
leases R2012b or newer.

In order to provide an internationalization of the use of the mo-
deling application, three languages are available (Portuguese, English
and French), wherein the user can toggle between them through the
appropriate menu. Figure 30 shows the number of downloads since the
launch of the app in November 2014.
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It can be noted that after an elevated number of downloads in the
first month, that number remained near the average thereafter. This
demand, coupled with the comments received during the lecture enti-
tled “Control of Nonlinear Systems Using T-S Fuzzy Models: Theory
and Implementation”, offered in the Brazilian Conference on Automatic
Control - CBA 2014, led to the development of another application.
This time the objective was the control design of fuzzy controllers.

For the control application, the basic idea is to automatically
import the fuzzy model originating from the modeling application, and
obtain the gains of a particular controller that satisfy the closed-loop
performance requirements, after defining parameters and optimization
criteria. Among the available library of control laws are the controllers
developed during the author’s doctoral studies. Further details on the
modeling and control applications are presented in the following sub-
sections.

6.1.1 Modeling Application

This application uses the theoretical fuzzy T-S modeling basis
presented in Chapter 2, based on the works Teixeira & Zak (1999),
Tanaka & Wang (2001), Feng (2010) and Klug & Castelan (2011). The
programming code uses symbolic math and string handling, among
other packages/toolboxes of the Matlab environment. The starting win-
dow, shown in Figure 31, allows the user to select the type of modeling
technique and the desired language.

Figure 31 – Initial window

Once the first configurations are defined in the starting window,
the application is divided into two distinct modules, approximate and
exact modeling, whose features are described below.
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6.1.1.1 Approximate Modeling Module

In this module the approximate T-S fuzzy modeling approach
presented in Appendix A is used. Basically, the procedure is performed
by choosing a finite number of Operation Points (OPs) which will be
associated with local linear submodels. These local submodels appro-
ximately represent the behavior of the nonlinear plant in the neighbor-
hood of the associated OPs, whose quantities and position are based
on the physical knowledge of the system dynamics and the desired ap-
proximation error.

Thus, the approximate T-S fuzzy model is obtained by the in-
terconnection of local submodels, provided by the use of membership
functions. These functions usually have a particular shape, such as tri-
angular, trapezoidal, Gaussian or bell-shaped, and should respect the
convex sum property.

The main window of this module is illustrated in Figure 32 with
the following subdivisions (a menu and five panels):

Figure 32 – Approximate modeling module window

1. Menu: the user can access pre-defined examples, save and open
a nonlinear system data, as well as change the language of the
program.
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2. Nonlinear System Panel: the user enters the analytical equations
of the nonlinear system, using, by default, pre-declared states x1

and x2.

3. Region of Operation Panel: the user can configure the region
of interest (via slide bars) and the desired number of operation
points.

4. Fuzzy Rules Panel: the user can visualize the fuzzy rules.

5. Membership Functions Panel: it allows the user to change and
visualize the shape of the membership functions (not all types
are pre-programmed).

6. Open Loop Simulation: it allows the user to execute a compara-
tive simulation with the original nonlinear plant and the respec-
tive T-S fuzzy model.

The user interface was made to be intuitive. Once the nonlinear
system is inserted and the operation region configured (quantity and
positioning of the OPs), the approximate fuzzy model is obtained by
pressing the “Acquire T-S Model” button. In this way, the application
computes the optimal local submodels and presents them in the “Fuzzy
Rules Panel”, also allowing the user to export the final result in vari-
ous formats, including .txt, .tex and .mat (required to use the control
software) .

Finally, once the nonlinear system is modeled, the user can run
an open loop simulation setting up the desired initial condition and
the number of samples. This simulation allows a comparative analysis
of the trajectories emanating from the initial condition, represented
by a square, of the original system with the fuzzy model, represented
respectively by the “+” and “◦” symbols.

In order to provide an evidence of how much each subsystem
contributes to the global fuzzy T-S model, each membership function
is represented with the same color as the associated operation point.
This fact allows the user to observe which regions of the state space
where there is dominance from a particular membership function, and
therefore where each local submodel has a larger weight on the repre-
sentation.

It is also important to emphasize that, as part of the desired
software interactivity, following any changes in the settings/parameters
that generates the fuzzy model (such as the quantity and positioning of
the OPs), all graphics are immediately rendered considering this new
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conjuncture. This is an important feature for the control designer, fa-
cilitating a suitable choice in the trade-off between the number of fuzzy
rules and the numerical and implementation complexity, also associated
with the accuracy of the representation.

6.1.1.2 Exact Modeling Module

In this part, the application allows to handle T-S fuzzy models
that accurately represent the original nonlinear system in a specific
domain of the state space. Notice that this module requires some
knowledge of the user with the exact fuzzy modeling technique and
it has more step configurations than the previous module. User-made
choices will determine whether the resulting model will have classical
or N-fuzzy structure.

The main window is observed in Figure 33. There is one menu
and four panels which are identical to the ones described previously:
panels 2, 5, 6 and 7. These panels are in accordance with the previous
panels 2, 4, 5 and 6. The following two panels have specific functions:

Figure 33 – Exact modeling module window

3. Validity Domain and Nonlinear Treatment Panel: the user sets
the desired domain of validity, where the model convexity is gua-
ranteed, via slide bars. Then, fuzzification is performed separately
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for each nonlinearity, by choosing the desired approach (max/min,
sector or n-fuzzy) each time.

4. Modeling and Verification Panel: once the system is inserted and
the nonlinear treatment configured, the application rewrites the
original equations in a particular form which should be verified
by the user.

The procedure for obtaining the exact T-S fuzzy model is based
on the individual treatment of nonlinearities of the system. After the
nonlinear system is inserted, the user must press the button “Acquire
Terms”. In this way, the program will separate the linear terms (which
do not require treatment) from the nonlinear terms (requiring treat-
ment). Next, for each nonlinearity, the user has to choose the de-
sired method of treatment (max/min, sector or n-fuzzy) and define
the premise variable, which is preset with a default value.

It is worth mentioning that for the max/min method a state
variable must be isolated when choosing the premise variable. For
instance, if the nonlinearity is x3

1, the premise variable must be defined
as x2

1; if the nonlinearity is x1x2, the premise variable can be defined
either by x1 or x2. Once the premise variable is defined, the user should
press the button “Set PV / Plot”, verify the graph and press the button
“Next”. This procedure is repeated for all remaining nonlinearities. At
last, after pressing the button “Finish”, the user should verify if the
rewritten equation of the system is correct in panel 4, and obtain the
exact model by pressing the button “Obtain Model”. In this way, the
final result can be visualized and exported in various formats, as in the
approximate modeling module.

Also similarly to the previous case, the user can run an open
loop simulation comparing the trajectories emanating from a given ini-
tial condition for the original nonlinear system and its respective fuzzy
model. In this case, as long as all procedures are correctly performed,
the dynamics of the model will match the dynamics of the original non-
linear system, and there will not be any observable differences between
the two curves. The weight of each local submodel can be seen through
the membership functions, graphically represented in the panel 6.

6.1.2 Control Application

After the release of the modeling application, and considering the
feedback received through the lecture given (and the article published)
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at the XX-CBA 2014, a second Matlab-based application aiming the
fuzzy controller design was developed. Thus, the two apps become
an interesting tool to study the control of nonlinear systems via T-S
fuzzy models. This is one of the contributions of this work, since very
few similar works are found in the literature which systematizes the
nonlinear control design in light of results found in the scope of Linear-
Time Invariant (LTI) systems.

To use this application, it is necessary to have previously ob-
tained the T-S fuzzy model with the modeling software (if necessary,
the model can be manually inserted, using permitted notation and sym-
bols). The program is able to load .mat files (a Matlab format) and
compute the controller gains based on a selected control law and a few
performance requirements and optimization settings. The user must
have installed the Yalmip Interface, and solvers Sedumi and SPDT3.

Until now, the following fuzzy controllers are available: state
feedback, state and sector nonlinearity feedback, and dynamic output
feedback, depending on how the system is represented (classical or N-
fuzzy). These controllers are based on the work described in the pre-
ceding chapters and in the articles Klug & Castelan (2011), Klug &
Castelan (2012) and Klug et al. (2014).

Figure 34 shows the user’s interface window. The use of the
menu is similar to the modeling application, allowing the user to load
pre-defined examples and change the language, among other features.
The following panels have specific functions:

2. Fuzzy Model Loading Panel: the user has to import the fuzzy
model obtained with the modeling app or insert it manually using
a .mat file.

3. Controller Settings Panel: the user defines the desired control law
and the optimization objectives to be used.

4. Solver Settings Panel: it allows the user to choose the solver and
its properties/settings.

5. Statistics Panel: it allows the user to visualize the data returned
by the solver in the solution of the optimization problem.

6. Simulation and Controller Gains Panel: it displays the controller
gains and enables the execution of a closed-loop simulation.

The use of the app is simple. Once the fuzzy model data is
loaded, the application identifies the type of model and the number
of rules, only enabling the relevant controllers, depending on how the
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Figure 34 – Control design program window

system is represented (classical or N-fuzzy). Then, the user must se-
lect the desired controller and objectives for optimization, which are
limited to feasibility or enlargement of the stability region (using a
unit ball or shape approach). Additionally, an inclusion condition can
be inserted to ensure that closed-loop trajectories emanating from the
computed level set do not leave the local domain of validity. Finally,
the user must select the LMI-solver and associated properties in the
panel 4, and then call the optimization problem by pressing the “Start
Optimization” button. At the end of this process, whose time depends
on the numerical complexity of the control algorithm, and also on the
number of rules, the controller gains are displayed in panel 6.

Furthermore, as in the modeling app, the user can run simula-
tions from the generated data. In this case, a closed-loop simulation
considering the obtained controller and the loaded T-S fuzzy model
can be simply configured by setting the desired initial condition and
the number of samples. Then, by pressing the button “Start Simula-
tion”, the user can verify that stability and performance requirements
have been satisfied.
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6.2 HIL IMPLEMENTATION

In this section some aspects related to the practical implemen-
tation of T-S fuzzy controllers on real platforms are considered. For
this purpose, HIL simulations were performed comparing a controller
developed in this thesis, and other found in literature. In this sense,
the study of the computational burden to the digital implementation of
nonlinear control systems is evaluated using the classical and N-fuzzy
approaches.

The HIL simulation is a technique for the development and test
of complex systems, typically used at the project level to design and
tune a controller. It is common to simulate the dynamics of the plant
in real-time, either because the physical prototype is not available or
because real experiments of the project involve unnecessary costs in
certain phases (development time and investment). The HIL frame-
work is characterized by the combined use of real and simulated compo-
nents/parts, where e.g. the hardware is the controller, and the software
is a virtual simulation of the real system.

The platform chosen to embed the control law is the FPGA de-
velopment board DE2−115, manufactured by Altera and illustrated in
Figure 35. This board is equipped with the Cyclone EP4CE115F29C7,
114480 logic elements and 266 multipliers. The FPGAs are emerging
as appropriate platforms for the implementation of control systems be-
cause, for instance, they offer advantages such as high performance and
concurrent computing, since the hardware is optimized to run a specific
application (GUPTA; KHARE; SINGH, 2010; LOPES; FAVARIM; CARATI,
2012). Moreover, this type of device is more efficient in terms of power
and performance compared to General Purpose Processors (GPPs, such
as microcontrollers and digital signal processors), and it has a shorter
design validation cycle and lower costs compared to Application Specific
Integrated Circuits (ASICs). Although the performance improvement
in the execution of high-demanding applications is prominent, there are
some obstacles still making difficult further dissemination of the use of
FPGAs, such as: the learning of new programming languages (Hard-
ware Description Languages - HDLs), and the paradigm that allows the
execution of several tasks in parallel.

In this context, the proposed setup consists on a Matlab/Simulink
application based and the HDL Coder/Verifier toolbox to generate code
for the embedded device and also to perform verification tests, saving
time and avoiding the introduction of coding errors.
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Figure 35 – FPGA development board DE2 − 115

In Figure 36, a comparison of the percentages of time spent for
the development of a functional design in HDL using manual and au-
tomatic coding is presented (BEEK; SHARMA, 2011).

0 10 20 30 40 50 60 70 80 90 100

Schedule Time (%)

H
D

L
C

o
d

in
g

M
a

n
u

a
l

A
u

t
o

m
a

t
ic

Requirements Phase Functional Design Detailed Design

HDL Creation HDL Verification Hardware Iteration
Final Implementation

Figure 36 – FPGA prototyping workflow



128

Notice that the use of code generation tools allows for a signi-
ficant reduction in the overall development time. Also, as automatic
HDL code generation is a faster process than hand-coding, the cycle
time for the development of a product is shorter, and thus it is the
time-to-market (i.e. the time from design/analysis to its availability
for purchase). Nowadays, this is an essential characteristic in develo-
ping a product because of market competitiveness (MEYER-BASE et al.,
2006). Additionally, engineers can better use this time saved to pro-
duce higher quality algorithms in the detailed design phase, resulting
in a higher quality FPGA prototype.

6.2.1 FPGA-in-the-loop Structure

The HIL implementation is performed with the physical plant
emulated on the computer through a Simulink diagram, and the con-
troller embedded on the development board DE2 − 115. This structure
is shown in Figure 37, also referred to as the FPGA-in-the-loop.

USB Cable

Ethernet/Gigabit
Matlab/Simulink

Figure 37 – FPGA-in-the-loop structure

It can be observed that the development board is connected to a
computer, which must have a Gigabit network card, through a crossover
cable. This connection is responsible for real-time communication bet-
ween the real controller and the virtual plant. A second connection is
made via a USB cable, which performs the loading of FPGA configu-
ration files, also known as bitstreams. These files contain the necessary
information to reconfigure the hardware which is required for the de-
sired application.

All simulations were performed using a computer with an Intel
Core i7-3612QM processor and 8GB of RAM, running Windows 8 and
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Matlab 2013a. To deal with the LMIs, the parser YALPMIP and the
solver SDPT3 were used.

6.2.2 Requirements and Development Stages

To accomplish with the HIL implementation, resources at hard-
ware level, such as the computer and the development board, are re-
quired, as shown in the FPGA-in-the-loop structure, as well as re-
sources at software level, including Matlab/Simulink with certain tool-
boxes and Quartus II, manufactured by the Altera Corporation. The
two programs exchange information to generate the configuration bit-
stream for the FPGA.

Once all hardware and software requirements are fulfilled, steps
briefly described below are performed (detailed settings and coding
process will not be shown):

i) Controller design using Simulink blocks compatible with the tool-
box HDL Coder

At this development phase the control designer should pay atten-
tion to use only blocks that have HDL code generation compatibi-
lity. There are over 170 blocks available, including basic arithmetic
operations, logical operations, and complex functions such as the
Fast Fourier Transform (FFT) and digital filter. However, there
are functions that are not natively supported, such as some trigono-
metric and transcendental functions. In this case solutions such as
the use of Look-Up Tables (LUTs) and/or symmetry properties
can be used.

ii) Floating-point to fixed-point algorithm conversion

Engineers typically test new ideas and develop initial algorithms
using floating-point data types. However, hardware implementa-
tion in FPGAs and ASICs usually requires fixed-point data re-
presentation. This representation generally has some advantages
with respect to the circuit size, power consumption, memory usage,
speed and cost. Thus, the standard floating-point Matlab algo-
rithm must be converted to fixed-point. This can be achieved
manually, redefining the data type of each variable/signal, or opti-
mally using the toolbox Fixed-Point Designer, where the bit widths
are optimized for a more efficient hardware generation.
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iii) VHDL Coding

Once the controller algorithm is correctly set to run in fixed-point,
the control designer have to generate the HDL code to be embed-
ded in the FPGA development board. For this purpose the HDL
coder toolbox is employed, which can generate codes compatible
with Simulink diagrams using the hardware description languages
Verilog and VHDL (or VHSIC hardware description language, from
Very High Speed Integrated Circuits). In this work the second lan-
guage was used, which is currently the most popular.

iv) Preparing FPGA-in-the-loop simulation

In this step, the configurations for the proper communication bet-
ween the virtual plant and the real controller are performed. A
Simulink diagram should be built containing the dynamics of the
plant, which will exchange data over the Ethernet network with the
controller embedded in the development board DE2 − 115. Thus,
for a correct communication between Simulink and development
board, the Internet Protocol (IP) settings must be correctly con-
figured. To assist in this process, the HDL WorkAdvisor inside the
HDL Coder toolbox can be used.

v) Loading FPGA and simulation

Finally, the code generated in the previous steps shall be loaded
into the FPGA by using an USB cable. Then, with the FPGA
configured by the bitstream file, it is possible to execute the HIL
simulation and analyze the collected data. Several reports are gene-
rated, allowing comparisons in terms of time consumption, number
of operations, number of logic elements, among others, which are
explored in the example described in the following section.

6.2.3 Complexity of Implementation

The complexity analysis of the control systems digital implemen-
tation is of great importance to determine the ideal programmable plat-
form in which is embedded the control law, ensuring there exists enough
processing power to perform all the required computations in the stipu-
lated time. In this perspective, together with the growing demand for
high-performance devices with reduced size and low-energy consump-
tion, the objective is to demonstrate that the use of N-fuzzy models
has significant advantages, when compared to the classical fuzzy tech-
niques.
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It is worth noting that the fuzzy rule reduction provided by the
use of N-fuzzy models yields a smaller numerical complexity of the
control algorithms. This property has already been demonstrated in
Appendix D, and it can also be checked considering the time required
to solve the optimization problems of the preceding chapters. This
is an important attribute because it prevents the computational bur-
den from increasing to a point where solvers may fail even in solving
simple problems. However, it should be clarified that, commonly, the
computational system that solves the optimization algorithm is not the
same as that performing the control action. In addition, the process
for obtaining the controller gains runs offline, and it is not necessary
to recalculate at each sampling time. Thus, although there are obvious
advantages related to feasibility and the time to solve the control algo-
rithms, the numerical complexity analysis has no direct influence over
the real implementation (platform to be chosen).

For comparing the complexity of implementation between con-
trollers developed for classical and N-fuzzy models, the following dy-
namic output feedback control laws are considered:

• Controller 1: Theorem 8.10 of Feng (2010)

• Controller 2: Theorem 1 of Klug, Castelan & Silva (2012)

The conditions established in the above articles have been adap-
ted to obtain a fair comparative criterion. Hence, the conditions re-
garding the domain of validity, saturation treatment, among others,
were not taken into account. In other words, only those related to the
stabilization problem were used.

6.2.3.1 Nonlinear System

Consider the unidimensional nonlinear system represented by:

x(k + 1) = x3(k) + sin(x(k)) + (0, 2 + x2(k))u(k). (6.1)

It is assumed, for instance, due to physical reasons, that the system
state is restricted to the region represented by x(k) ∈ [−π/3, π/3].
Therefore, it is possible to locally encompass the nonlinearity sin(xk)
into a limited sector, i.e., ϕ(k) = sin(x(k)) ∈ S[Ω1, Ω2], with Ω1 =
3
√

3/2π and Ω2 = 1. Also, the premise variable νk = x2(k) is defined,
and then ν(k) ∈ [d1, d2], with d1 = 0 and d2 = π2/9 being the limits
of ν(k). Thus, system (6.1) can be described by the following N-fuzzy
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model with two nonlinear local rules:

x(k + 1) =
2
∑

i=1

α(i)(k) [dix(k) + (0, 2 + di)u(k)] + ϕ(k), (6.2)

with α(1)(k) =
d2 − ν(k)

d2 − d1
and α(2)(k) =

ν(k) − d1

d2 − d1
.

Otherwise, the nonlinearity ϕ(k) might be rewritten as follows:

ϕ(k) = sin(x(k)) =





2
∑

j=1

ǫ(j)(k)Ωj



x(k), (6.3)

with ǫ(j)(k), j = 1, 2, being any function validating (6.3) and satisfying
the properties ǫ(1) + ǫ(2) = 1 and ǫ(j) ≥ 0, j = 1, 2. For instance, one
can choose1

ǫ(1) =







sin(x) − Ω1x

x(Ω2 − Ω1)
, x 6= 0

1, x = 0
and ǫ(2) =







Ω2x − sin(x)

x(Ω2 − Ω1)
, x 6= 0

0, x = 0

Hence, the following classic T-S fuzzy model with four linear local rules
is obtained:

x(k + 1) =
2
∑

i=1

2
∑

j=1

α(i)(k)ǫ(j)(k) {(di + Ωj)x(k) + (0.2 + di)u(k)}

=
4
∑

i=1

h(i)(k) {Aix(k) + Biu(k)}

(6.4)
where Ai = di + Ωj , Bi = 0.2 + di and h(i)(k) = α(i)(k)ǫ(j)(k), for
i = j + 2(i − 1) and i, j = 1, 2.

6.2.3.2 Results

Four different cases are defined to analyze the complexity of im-
plementation, taking into account the type of fuzzy modeling used to
represent the system to be controlled and the structure of the dynamic
compensator (previously presented in section 6.2.3):

1For convenience, the time dependence is omitted.
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• Case 1: Classical T-S fuzzy model with Controller 1;

• Case 2: Classical T-S fuzzy model with Controller 2;

• Case 3: N-fuzzy model with Controller 2 considering ϕ(k) com-
puted;

• Case 4: N-fuzzy model with Controller 2 considering ϕ(k) mea-
sured;

All of the above cases were implemented in HIL structure using
the nonlinear plant described in (6.1) and the procedures explained in
section 6.2.2. Thus, through the reports generated by Matlab and by the
FPGA software Quartus II, it is possible to compare the four proposed
cases using as performance criteria: i) the number of operations, ii) the
compiler time to generate the bitstream, and iii) the occupied hardware
area, which are described in the sequel.

In Table 3, the number of operations required to compute the
control laws can be observed. Notice the smaller number of operations
for the cases which use the N-fuzzy modeling, likely contributing to a
reduction on the implementation complexity.

Table 3 – Number of operations

Classical N-fuzzy
Operation Case 1 Case 2 Case 3 Case 4

Multiplication 58 57 30 28
Addition / Subtraction 50 50 28 21

Multiplexing 23 23 14 6

It is also important to mention that a smaller number of opera-
tions has direct influence on the runtime of the control loop, regardless
the platform used (FPGAs, microprocessors, DSPs). This factor is evi-
denced by the reports generated by the Quartus II FPGA compiler,
as well as experimentally by measurements performed with the use of
an oscilloscope (where it was shown that the controller in case 4 takes
about half the time to be computed in comparison with case 1). Based
on this data, it can be seen that the N-fuzzy approach is more suitable
for systems demanding high sampling rates.

The computational efficiency when controlling nonlinear systems
using N-fuzzy models can also be verified by the time required to com-
pile/build the code for the FPGA, given in Table 4. A 46% reduction
in the total time can be noted from case 1 to case 4.
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Table 4 – Compilation time (in minutes)

Classical N-fuzzy
Phase Case 1 Case 2 Case 3 Case 4

Analysis / Synthesis 01’40” 01’30” 01’01” 01’59”
Filter 04’34” 04’33” 02’55” 02’16”

Assembler 00’07” 00’06” 00’07” 00’06”
TimeQuest 00’15” 00’15” 00’11” 00’11”

Total 06’36” 06’24” 04’14” 03’32”

In Table 5, the number of logic elements used to implement the
control law and communication in the FPGA development board2 can
be verified. A reduction of 35, 39% and 37, 42%, in case 1 and cases 3
and 4 is observed, respectively. Thus, considering the number of logic
elements available in the development board DE2 − 115, it would be
possible to introduce 8 compensators in parallel in the hardware, of the
type described in case 1, whereas for case 4, it would be possible to
introduce 13 compensators.

Table 5 – Hardware occupation

Classical N-fuzzy
Case 1 Case 2 Case 3 Case 4

Logical Elements 13139 12056 8488 8222
Combinational Functions 12576 11450 7947 7620

9-bits Multipliers 324 252 127 116

In Figure 38, the temporal evolution of the system state to the
initial condition x0 = 0, 5 and xc,0 = 0, for the cases 1 (classical model)
and 4 (N-fuzzy model) can be seen. Notice that stabilization is achieved
in both cases, with a faster trajectory convergence for the case 4, al-
though no specific condition was included for this purpose.

The difference between the HIL simulation, performed with the
controller implemented on the FPGA development board, and the si-
mulation implemented entirely on the computer, is shown in Figure 39.
This is a quantization error, derived from the conversion of control al-
gorithm from floating-point to fixed point. Therefore, a suitable choice

2For comparison purposes, all the optimization criteria were equally selected
between the simulations
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Figure 38 – State trajectory x(k)

of the bit widths is important to avoid overflows, which may affect the
performance of the closed loop system.
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Figure 39 – Quantization error

6.3 CONCLUDING REMARKS

In this chapter, general tools concerning the analysis and design
of nonlinear control systems using T-S fuzzy models were presented.
Two software programs were developed in order to assist researchers
and engineers to design, in a few steps, a reasonable controller for a
known nonlinear system. It also allows users to quickly obtain results
for comparison with their own techniques. From another point of view,
the software interactivity enhances the learning process by exploiting
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the advantages of immediately seeing the effects of changes, which can
never be shown in static pictures. Three languages are available, as well
as other interesting features, such as different types of modeling, pre-
defined examples, possibility to open/save and export data in various
formats, as well as the execution of open and closed-loop simulations.
Presently, the first app has been published as a Matlab app, also running
from an executable file, provided the user has the Matlab Compiler
Runtime (MCR) installed. In a future release it will be launched it as a
standalone application, independent of external libraries and/or other
toolboxes.

Regarding the practical implementation of fuzzy controllers, HIL
simulations were performed considering the physical plant running vir-
tually in a Matlab/Simulink environment using a desktop computer,
and the control law embedded in a FPGA development board. Thus,
a higher numerical and implementation efficiency when using N-fuzzy
models was demonstrated, with a significant reduction in the computa-
tional burden required to obtain the controller gains, in the time taken
to generate the internal architecture of the FPGA, in the number of
operations to compute the control law, and in the area of the FPGA cir-
cuit. This proves that the use of the N-fuzzy model is more adequate for
critical applications in terms of sampling rate, and/or low-powered pro-
gramming platforms, without compromising the overall performance of
the control system.



7 CONCLUSION

In this thesis, novel approaches to control design, applied to
nonlinear discrete-time systems by means of T-S fuzzy models have
been presented. For fuzzy modeling, an alternative method was pro-
posed based on the use of nonlinear local rules, instead of the classical
ones, providing the following benefits: i) it can reduce the number of
rules when compared to the classical T-S representation, leading to
a lower numerical complexity while maintaining the model exactness;
and ii) it allows the design and practical implementation of dynamic
output feedback controllers in the presence of unmeasurable nonlineari-
ties. Furthermore, the proposed results consider inherent issues in the
control problem, such as the regional validity of the T-S fuzzy models,
physical constraints of actuators, and the presence of external signals
usually found in real systems. Examples were provided throughout the
document, in order to illustrate the proposed techniques.

At first, in Chapter 2, the features and mathematical machinery
of T-S fuzzy models were presented. The procedure to obtain an N-
fuzzy model for a class of nonlinear systems was described in detail. It
is important to remark that the local characteristic of T-S modeling is
often not considered in most literature FMB results, which may lead to
poor performance or even instability of the closed-loop system. Also,
rule reduction, provided by the use of nonlinear local submodels, and its
implication in the numerical complexity, were demonstrated, preventing
the computational burden from increasing to a point where solvers may
fail to solve even simple problems.

Next, in Chapter 3, the synthesis of a fuzzy dynamic output
feedback controller was discussed, taking into account the saturation
of the actuator and the regional validity of the fuzzy model. An anti-
windup gain was considered as an attempt to mitigate the undesired
effects of saturation, as well as the use of a performance index based
on the λ-contractivity of the level set, associated with the Lyapunov
function, in order to ensure a certain rate of temporal convergence of
the closed-loop system trajectories.

In Chapters 4 and 5, the control of nonlinear systems subject to
external disturbances, bounded in energy and amplitude, respectively,
was considered. In the first case, LMI-based conditions and three con-
vex optimization problems were proposed to locally ensure the input-to-
state stability in the ℓ2-sense and a certain input-to-output performance
through an upper bound for the system ℓ2-gain. Otherwise, in the pre-
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sence of amplitude bounded disturbances, it is not possible to ensure
the asymptotic stability of the origin, and in this case the concept of
ultimate bounded (UB) stability was considered. Two ellipsoidal sets
having different shapes, associated to the set of admissible initial con-
ditions and to the concept of UB stability, were taken into account
to handle the control problem. Moreover, the proposed dynamic con-
troller admits the presence of unmeasurable nonlinearities, which is not
possible for the classical PDC dynamic controllers.

Later, in Chapter 6, practical aspects of the real implementation
of fuzzy controllers were considered. Hardware-in-the-loop simulations
were performed, enabling the complexity analysis of the digital imple-
mentation of classical and N-fuzzy controllers. Also, an interactive tool
aiming to assist students and researchers in the nonlinear control design
using fuzzy strategies was presented.

7.1 CONTRIBUTIONS OF THE THESIS

Prior to this document, the contributions of the research through-
out this PhD include the following journal articles:

• Local Stabilization of Nonlinear Discrete-Time Systems
Subject to Amplitude Bounded Disturbances. Klug, M.,
Castelan, E. B. and Coutinho, D. in submission process.

• T-S Fuzzy Approach to the Local Stabilization of Nonli-
near Discrete-Time Systems Subject to Energy-Bounded
Disturbances. Klug, M., Castelan, E. B. and Coutinho, D.
Journal of Control, Automation and Electrical Systems - IJCAES
2015.

• Fuzzy Dynamic Output Feedback Control Through Non-
linear Takagi-Sugeno Models. Klug, M., Castelan, E. B.,
Leite, V. J. S. and Silva, L. F. P. Fuzzy Sets and Systems - FSS
2014.

• Local Stabilization of Time-Delay Nonlinear Discrete-Time
Systems Using Takagi-Sugeno Models and Convex Opti-
mization. Silva, L. F. P., Leite, V. J. S., Castelan, E. B. and
Klug, M. Mathematical Problems in Engineering - 2014.

• Compensadores Dinâmicos para Sistemas Discretos no
Tempo com Parâmetros Variantes e Aplicação a um Sis-
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tema Fuzzy Takagi-Sugeno. Klug, M. and Castelan, E. B.
Revista SBA: Controle & Automação - 2012.

The following papers, published in conference proceedings, were also a
part of this research:

• Interactive Software for Modeling and Control of Nonli-
near Systems: A T-S Fuzzy Approach. Klug, M., Castelan,
E. B. and Coutinho, D. XII Simpósio Brasileiro de Automação
Inteligente - SBAI 2015.

• Compensadores Dinâmicos para Sistemas Não Lineares
Utilizando Modelos Fuzzy T-S: Estudo Comparativo e
Implementação HIL. Klug, M., Castelan, E. B., Coutinho, D.
and Silva, L. F. P. XX Congresso Brasileiro de Automática - CBA
2014.

• Local Stabilization of Nonlinear Discrete-Time Systems
with Uncertain Time-Delay Using T-S Models. Silva, L.
F. P., Leite, V. J. S., Castelan, E. B., Feng, G. and Klug, M. XX
Congresso Brasileiro de Automática - CBA 2014.

• Control of Nonlinear Discrete-Time Systems Subject to
ℓ2-Bounded Disturbances Using Local Nonlinear Fuzzy
T-S Models. Klug, M., Castelan, E. B. and Coutinho, D. IEEE
52nd Annual Conference on Decision and Control - CDC 2013.

• Controle Seguro de Sistemas Não Lineares Utilizando
Modelos Híbridos Fuzzy L’ure com Saturação dos At-
uadores. Klug, M., Castelan, E. B. and Silva, L. F. P. XIX
Congresso Brasileiro de Automática - CBA 2012.

• Síntese Convexa de Controladores Fuzzy para Sistemas
Takagi-Sugeno Discretos no Tempo com Atraso e Limi-
tação nos Estados. Silva, L. F. P., Leite, V. J. S., Castelan, E.
B. and Klug, M. XIX Congresso Brasileiro de Automática - CBA
2012.

• A Dynamic Compensator for Parameter Varying Sys-
tems Subject to Actuator Limitations Applied to a T-S
Fuzzy System. Klug, M., Castelan, E. B. and Leite, V. J. S.
Proc. of 18th IFAC World Congress - IFAC 2011.

• Redução de Regras e Compensação Robusta para Sis-
temas Takagi-Sugeno com Utilização de Modelos Não
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Lineares Locais. Klug, M. and Castelan, E. B. X Simpósio
Brasileiro de Automação Inteligente - SBAI 2011.

Further, all acquired expertise also provided the doctoral student
with the opportunity to give a lecture entitled “Control of Nonlinear
Systems Using T-S Fuzzy Models: Theory and Implementation”, of-
fered in CBA 2014, as well as invitations to review articles in the follo-
wing journals: Automatica, Journal of the Franklin Institute, Mathe-
matical Problems in Engineering, IET Control Theory & Applications,
International Journal of Adaptative Control and Signal Processing and
Neurocomputing; and conferences: IFAC 2011, CBA 2012 and 2014,
SBAI 2011 and 2015, and ISIE 2015.

7.2 PERSPECTIVES

Among some possible extensions to the work presented in this
thesis, the following research directions can be mentioned:

• Extend the proposed approaches to the application in nonlinear
continuous-time systems;

• Investigate the use of N-fuzzy models with non-PDC strategies,
suitable for static and dynamic output feedback controllers;

• Consider other typical actuator nonlinearities, such as dead-zone,
backlash, hysteresis and relay;

• Analyze the effects of discretization when considering hybrid sys-
tems;

• Improve the control algorithms in order to obtain less conservative
results regarding the guaranteed domain of stability;

• Apply the concepts and strategies developed to real systems.
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A.1 APPROXIMATE T-S FUZZY MODELS

In this appendix, it is presented an approximate modeling method
that can be used to obtain a more compact fuzzy representation (with
reduced number of rules) at the cost of losing the accuracy of the model.
This approach will be described here considering a nonlinear continuous-
time system, as originally proposed in the reference Teixeira & Zak
(1999), and that can be easily adapted to the discrete-time case.

Let the nonlinear plant given by:

ẋ = f(x)+V(x)u, f(x) =
[

f(1)(x) · · · f(nx)(x)
]

′

. (A.1)

It is desired to obtain a fuzzy model that approximates the orig-
inal nonlinear system in a particular region of the state space. To
this end, the control designer must define nr Operation Points (OPs)
which will be associated with local submodels. The amount and spa-
tial positioning of these points are based on the physical knowledge of
the system dynamics. The objective is that each submodel represents
approximately the behavior of the nonlinear plant in the neighborhood
of the associated OP.

For the cases where the OP is also an equilibrium point of the
system, it is possible to obtain the local submodel using Taylor series.
An additional requirement is that the equilibrium occurs for the pair
{xeq, ueq} = {0, 0}, avoiding a affine term in the submodel equa-
tions. For the other cases an alternative approach will be performed,
as follows.

Consider x0 an OP that do not correspond to an equilibrium
point of the nonlinear system. Thus, the following problem for obtain
the submodel is considered:

{

f(x) + V(x)u ≈ Ax + Bu for all u, x ≈ x0

f(x0) + V(x0)u = Ax0 + Bu for all u, x = x0

i.e. the linear local submodel should represent approximately the dy-
namic behavior of the plant (A.1) for x ≈ x0, and exactly for x = x0.
The optimal solution for this problem is described in Teixeira & Zak
(1999), and can be represented by:



















B = V(x0)

A =
[

a(1) · · · a(nx)

]
′

,

a(i) = ∇f(i)(x0) +
f(i)(x0) − xT

0 ∇f(i)(x0)

‖x0‖
2
2

x0

, x0 6= 0

(A.2)
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where ∇f(i)(x) =
[

∂f(i)(x)/∂x(1) · · · ∂f(i)(x)/∂x(nx)

]
′

and
‖x0‖

2 = x
′

0x0. So, the T-S fuzzy model is given by

ẋ =
nr
∑

i=1

h(i) {Aix + Biu}

with h(i), ∀ i = 1, ..nr being membership functions chosen by the
control designer generally with one of the following shapes: triangular,
trapezoidal, gaussian or bell, as show in Figure 40.

(a) Triangular (b) Trapezoidal

(c) Gaussian (d) Bell

Figure 40 – Typical membership functions

It is interesting to emphasize again, that the optimal local mo-
dels, for OPs that are not equilibrium points of the systems, cannot
be obtained by linearization using Taylor series. This is due to the
fact that Taylor linearizes the model in terms of the variations of the
variables, and not in their original values, thus yielding an affine model
for each OP that is not an equilibrium point.
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Example - Approximate T-S Fuzzy Modeling: Consider the
problem of balancing an inverted pendulum on a cart represented by
(TANAKA; WANG, 2001):

ẋ(1) = x(2)

ẋ(2) =
g sin(x(1)) − amlx2

(2) sin(2x(1))/2 − a cos(x(1))u

4l/3 − aml cos2(x(1))

where x(1) denotes the angle (in radians) of the pendulum from the
vertical; x(2) is the angular velocity (in radians/s); g = 9.8(m/s2) is
the gravity acceleration; m is the mass of the pendulum (in kg); M
is the mass of the cart (in kg); 2l is the length of the pendulum (in
m); and u is the force applied to the cart (in newtons). It is defined
a = 1/(m + M).

For this example it is considered the following data: m = 2.0kg,
M = 8.0kg and 2l = 1.0m. So, the constant a can be computed.
Furthermore, it is assumed that the desired interval of operation is
about

∣

∣x(1)

∣

∣ ≤ π/3 and
∣

∣x(2)

∣

∣ ≤ 1.5. Then, the OPs are arbitrarily
chosen (which will influence the model accuracy by the amount and
positioning of the points), as shown in Figure 41.

P1 P3

P4 P5 P6

P7 P8 P9

P2

x1

x2

−π/3 π/3

−3

3

Figure 41 – Operation points

Thus, by applying the equations (A.2), it is computed the T-S
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fuzzy model as follows

ẋ =
9
∑

i=1

h(i) {Aix + Biu}

where the functions h(i) are chosen with one of the shapes defined in
Figure 40, and the matrices that compose the submodels are given by:

A1 =

[

0 1
7.3487 −1.6412

]

, B1 =

[

0
−0.0779

]

,

A2 =

[

0 1
15.7059 0

]

, B2 =

[

0
−0.1765

]

,

A3 =

[

0 1
7.3487 1.6412

]

, B3 =

[

0
−0.0779

]

,

A4 =

[

0 1
12.6304 0

]

, B4 =

[

0
−0.0779

]

,

A5 =

[

0 1
9.3600 0

]

, B5 =

[

0
−0.0052

]

,

A6 =

[

0 1
12.6304 0

]

, B6 =

[

0
−0.0779

]

,

A7 =

[

0 1
7.3487 −1.6412

]

, B7 =

[

0
−0.0779

]

,

A8 =

[

0 1
15.7059 0

]

, B8 =

[

0
−0.1765

]

,

A9 =

[

0 1
7.3487 −1.6412

]

, B9 =

[

0
−0.0779

]

.
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B.1 EXAMPLES OF T-S FUZZY MODELS

In the sequel are presented some examples of nonlinear systems
modeled using classical and/or N-fuzzy approaches, as described in
subsection 2.2.2, and that will be used in order to demonstrate the
performance of the proposed controllers in Chapters 3, 4 and 5.

B.2 DYNAMIC SYSTEM 1

Consider the following discrete-time nonlinear system (KLUG;

CASTELAN; COUTINHO, 2013):

x(1)(k + 1) = −
13

20
x(1)(k)+

11

20
x(2)(k)+

9

40
x2

(1)(k)+
3

40
x(1)(k)x(2)(k)

+
3

10
x(2)(k)(1 + sin(x(2)(k)))

x(2)(k + 1) =
1

5
x(1)(k)+

6

5
x(2)(k)+

1

5
x2

(1)(k)+
1

20
x(1)(k)x(2)(k)

+
5

4
u(k)+

1

40
x(1)(k)u(k)+

51

100
w(k)+

39

400
x(1)(k)w(k)

z(k) = x(1)(k) +
23

20
u(k) +

7

40
x(1)(k)u(k)

(B.1)

Assume that the domain of validity X as given in (2.17) is defined
by means of

N =
[

1 0
0 1

]

and φ =
[

2
1.5

]

.

Additionally, defining the premise variable ν(k) = x(1)(k), and the

sector nonlinearity ϕ(k)=ϕ(Lx(k))=
3

10
x(2)(k)(1+sin(x(2)(k))),

with L =
[

0 1
]

, the system dynamics in (B.1) can be cast as fol-
lows:
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x(k + 1) =

















−
13

20

11

20
1

5

6

5






+ν(k)







9

40

3

40
1

5

1

20

















x(k) +

[

1

0

]

ϕ(k)

+

{[

0

5

4

]

+ν(k)

[

0

1

40

]}

u(k)+

{[

0

51

100

]

+ν(k)

[

0

39

200

]}

w(k)

z(k) = x(1)(k) +

(

23

20
+

7

40
ν(k)

)

u(k)

(B.2)

where x(k) =
[

x(1)(k) x(2)(k)
]

′

.
Note that the nonlinearity ϕ(k) can be globally encompassed

into a sector bounded nonlinearity, i.e., ϕ(k) ∈ S[0, 0.7], as shown in
Figure 42.

x(2)

ϕ = 3
10

x(2)(1 + sin(x(2))) 0.7x(2)

Figure 42 – Global sector for ϕ = 3
10

x(2)(1 + sin(x(2)))

Also, it can be observed that ν(k) ∈ [d1, d2], with d1 = −2 and
d2 = 2 being the extremum points of ν(k) for the domain X . Thus,
the system in (B.2) can be exactly described by the following N-fuzzy
model:
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x(k + 1) =

2
∑

i=1

h(i)(k){Aix(k)+Biu(k)+Bwiw(k)+Giϕ(k)}

z(k) =

2
∑

i=1

h(i)(k){Czix(k)+Bziu(k)+Bzwiw(k)+Gziϕ(k)}

(B.3)

with h(1)(k) =
d2 − ν(k)

d2 − d1

, h(2)(k) =
ν(k) − d1

d2 − d1

, and the following

system matrices, for i = 1, 2:

Ai =









−
13

20
+

9

40
di

11

20
+

3

40
di

1

5
+

1

5
di

6

5
+

1

20
di









, Bi =







0

5

4
+

1

40
di







Bwi =





0
51

100
+

39

200
di



 , Gi = G =

[

1

0

]

Czi =Cz =
[

1 0
]

, Bzi =
23

20
+

7

40
di, Bzwi =0 and Gzi =0.

B.3 DYNAMIC SYSTEM 2

Consider the control problem of backing-up a truck-trailer as
studied in (FENG; MA, 2001; LO; LIN, 2003; KLUG; CASTELAN; COUTI-

NHO, 2015b). The state space representation of the system is described
by

x(1)(k + 1) = x(1)(k) −
vT

L
sin(x(1)(k)) +

vT

l
u(k)

x(2)(k + 1) = x(2)(k) +
vT

L
sin(x(1)(k)) + 0.2w(k)

x(3)(k + 1) = x(3)(k) + vT cos(x(1)(k)) sin(x(2)(k)

+
vT

2L
sin(x(1)(k))) + 0.1w(k)

z(k) = 7x(1)(k) − vT x(2)(k) + 0.03x(3)(k) −
vT

l
u(k)

(B.4)
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where x(1)(k) represents the angle between the truck and the trailer,
x(2)(k) denotes the angle of the trailer, x(3)(k) is the vertical position
of the rear, and l and L represent the length of the vehicle and of
the trailer, respectively. T is the sampling time, and v the constant
reverse speed. In particular, we consider l = 2.8m, L = 5.5m,
v = −1.0m/s and T = 2.0s. Due to physical limitations and/or to
guarantee a safe operation of the system, such as preventing the jack-
knife effect that occurs when x(1)(k) = ±π/2, the considered domain
of validity X in (2.17) is defined as follows (LO; LIN, 2003)

N =
[

1 0 0
0 1 0

]

and φ =
[

π

3

170π

180

]
′

.

Then, by defining the premise variables

ν(1)(k) =
sin(x(1)(k))

x(1)(k)
, ν(2)(k) =

cos(x(1)(k))

x(1)(k)
, ν(3)(k) =

sin(ρ(k))

ρ(k)
,

with ρ = x(2)(k) + vT

2L
sin(x(1)(k)), and observing that ν(1)(k) ∈

[b1, b2], ν(2)(k) ∈ [d1, d2] and ν(3)(k) ∈ [g1, g2] for the considered
domain X , with b1 = 1, b2 = 0.827, d1 = 1, d2 = 0.5, g1 = 1 and
g2 = 10−2/π, it is obtained the following classical T-S model of the
system (B.4) with eight linear local rules

x(k + 1) =
8
∑

i=1

h(i)(k) (Aix(k) + Biu(k) + Bwiw(k))

z(k) = Czx(k) + Bzu(k) + Bzww(k)
(B.5)

where

Ai =Ajkl =

















1 −
vT

L
bj 0 0

vT

L
bj 1 0

v2T 2

2L
bjdkgl vT dkgl 1

















,

Bi = B =









vT

l
0

0









, Bwi = Bw =







0

0.2

0.1






,
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Cz =
[

7 −2 0.03
]

, Bz = −
vT

l
, and Bzw = 0,

with i = l + 2(k − 1) + 4(j − 1), for j, k, l = {1, 2}. The member-
ship functions h(i)(k), i = 1, ..., 8, are the binary product between
functions M i

j , j = {1, 2} and i = {1, 2, 3}, defined as:

M1
1 =







sin(x(1)(k)) − b2x(1)(k)

x(1)(k)(b1 − b2)
, x(1)(k) 6= 0

1, x(1)(k) = 0

, M1
2 = 1 − M1

1 ,

M2
1 =

cos(x(1)(k)) − d2

d1 − d2

, M2
2 = 1 − M2

1 and

M3
1 =







sin(ρ) − g2ρ

ρ(g1 − g2)
, ρ 6= 0

1, ρ = 0
, M3

2 = 1 − M3
1 .

B.4 DYNAMIC SYSTEM 3

Consider the following discrete-time nonlinear system (KLUG;

CASTELAN; COUTINHO, 2015):

x(1)(k + 1) =
3

10
x(1)(k)−

1

2
x(2)(k)−

1

10
x2

(1)(k)+
1

4
x(1)(k)x(2)(k)

+
3

10
x(2)(k)(1 + sin(x(2)(k)))+

7

10
u(k)+

1

20
x(1)(k)u(k)

−
1

2
w(1)(k)−

1

4
x(1)(k)w(1)(k)−

11

20
w(2)(k)+

7

40
x(1)(k)w(2)(k)

x(2)(k + 1) =
1

20
x(1)(k)−

3

10
x(2)(k)+

9

40
x2

(1)(k)−
1

10
x(1)(k)x(2)(k)

−
1

20
u(k)+

1

40
x(1)(k)u(k)+

9

10
w(1)(k)+

9

20
x(1)(k)w(1)(k)

+
1

20
w(2)(k)+

19

40
x(1)(k)w(2)(k)

(B.6)

Assume that the domain of validity X as given in (2.17) is defined
by means of

N =
[

1 0
0 1

]

and φ =
[

2
1.5

]

.



164

i) Classical T-S Modeling: Defining the premise variables ν(1)(k) =
x(1)(k) and ν(2)(k) = sin x(1)(k), the system dynamics in (B.6) can
be cast as follows:

x(k + 1) =

















−
1

2
−

11

20
9

10

1

40






+ ν(1)(k)







−
1

4

7

40
9

20

19

40

















w(k)

+

















3

10
−

1

5
1

20
−

3

10






+ν(1)(k)







−
1

10

1

4
9

40
−

1

10






+ν(2)(k)





0
3

10

0 0















x(k)

+

















7

10

−
1

20






+ν(1)(k)







1

20
1

40

















u(k).

(B.7)

where x(k)=
[

x(1)(k) x(2)(k)
]

′

and w(k)=
[

w(1)(k) w(2)(k)
]

′

.
In the domain X , the maximum and minimum values of the

premise variables are such that ν(1)(k) ∈ [d1, d2], with d1 = −2 and
d2 = 2, and ν(2)(k) ∈ [e1, e2], with e1 = −0.998 and e2 = 0.998.
Thus, the system in (B.6) can be exactly described by the following
classical T-S fuzzy model:

x(k + 1) =
4
∑

i=1

hk(i) (Aix(k) + Biu(k) + Bwiw(k)) (B.8)

where, for j, l = 1, 2 and i = l + 2(j − 1):

Ai =









3

10
−

1
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,
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.

The membership functions h(i)(k), i = 1, ..., 4, are the binary product
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between functions M̃ i
j , j = {1, 2} and i = {1, 2}, defined as:

M̃1
1 =

d2 − ν(1)(k)

d2 − d1

, M̃1
2 =

ν(1)(k) − d1

d2 − d1

,

M̃2
1 =

e2 − ν(2)(k)

e2 − e1

, M̃2
2 =

ν(2)(k) − e1

e2 − e1

.

ii) N-Fuzzy Modeling: Considering the sector nonlinearity ϕ(k) =

ϕ(Lx(k)) =
3

10
x(2)(k)(1+sin(x(2)(k))), and by defining the pre-

misse variable ν(k) = x(1)(k), the system dynamics in (B.6) can be
cast as follows:

x(k + 1) =
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(B.9)

where x(k)=
[

x(1)(k) x(2)(k)
]

′

and w(k)=
[

w(1)(k) w(2)(k)
]

′

.
Notice that the nonlinearity ϕ(k) is the same as that presented

in the dynamic system 1, therefore it can be globally encompassed
into a sector bounded nonlinearity, i.e., ϕk ∈ S[0, 0.7], as well as
ν(k) ∈ [d1, d2], with d1 = −2 and d2 = 2 being the extremum
points for ν(k) in the domain X . Thus, the system in (B.9) can be
exactly described by the following N-fuzzy model:

x(k + 1) =
2
∑

i=1

hk(i) (Aix(k) + Biu(k) + Bwiw(k) + Giϕk)

(B.10)
where, for i = 1, 2:
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Ai =
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, Gi = G =
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]

,
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,

and h(1)(k) =
d2 − ν(k)

d2 − d1

, h(2)(k) =
ν(k) − d1

d2 − d1

.
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C.1 TRANSFORMATION ϕ̄ ∈ [Ω1, Ω2] IN ϕ ∈ [0, Ω]

This appendix demonstrates a transformation process with sec-
tor nonlinearities which is required to compatibilize the representation
given in (2.6) with the condition (2.3).

Let ϕ̄(k) = ϕ̄(Lx(k)) a vector of nonlinearities belonging to
the bounded sector condition ϕ̄(.) ∈ [Ω1, Ω2], i.e. for the matrices Ω1

and Ω2 the following condition is satisfied

[ϕ̄(k) − Ω1Lx(k)]
′

∆−1[ϕ̄(k) − Ω2Lx(k)] ≤ 0, ϕ̄(0) = 0. (C.1)

Defining ϕ(k) = ϕ̄(k) − Ω1Lx(k) ⇒ ϕ̄(k) = ϕ(k) + Ω1Lx(k) and
replacing in (C.1), leads to

ϕ
′

(k)∆−1[ϕ(k) − (Ω2 − Ω1)Lx(k)] ≤ 0.

If Ω = Ω2 − Ω1, then the mesh transformation ϕ̄ ∈ [Ω1, Ω2] in
ϕ ∈ [0, Ω] is computed by

{

ϕ
′

(k)∆−1[ϕ(k) − ΩLx(k)] ≤ 0, ϕ̄(0) = 0,
Ω = Ω2 − Ω1 e ϕ(k) = ϕ̄(k) − Ω1Lx(k)

(C.2)

Example 1 - Sector nonlinearity ϕ̄ = sin(x), L = 1: It is
possible to verify the for the region |x| ≤ d, with d = 2π/3, the
nonlinearity is encompassed into the bounded sector

ϕ̄(.) ∈ [Ω1, Ω2], Ω1 =
sin(2π/3)

2π/3
and Ω2 = 1.

Applying the mesh transformation elucidated in (C.2), it is obtained

ϕ = sin(x) −
sin(2π/3)

2π/3
x, belonging to the bounded sector

ϕ(.) ∈ [0, Ω], Ω = Ω2 − Ω1, for |x| ≤ d.

A graphic description of the transformation process can be seen
in Figure 43.

Example 2: - Effect upon the system matrices: Let the subsys-
tems described by:
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x

ϕ̄(x)

Ω1x

Ω2x

d

−d

ϕ(.) ∈ [Ω1, Ω2] for |x| ≤ d

x

ϕ(x)

Ωx

d

−d

ϕ(.) ∈ [0, Ω] for |x| ≤ d

Figure 43 – Mesh transformation

Σ̄i =















x(k + 1) = Āix(k) + B̄iu(k) + B̄wiw(k) + Ḡiϕ̄(k)

y(k) = C̄ix(k)

ϕ̄(.) ∈ [Ω1, Ω2]

Applying the mesh transformation elucidated in (C.2), the modified
subsystem is given by

Σi =















x(k + 1) = Aix(k) + Biu(k) + Bwiw(k) + Giϕ(k)

y(k) = Cix(k)

ϕ(.) ∈ [0, Ω]

with the new matrices computed as Ω = Ω2 − Ω1, ϕ(k) = ϕ̄(k) −
Ω1Lx(k), Ai = Āi + GiΩ1L, Bi = B̄i, Bwi = B̄wi, Gi = Ḡi and
Ci = C̄i.



APPENDIX D -- Conditions of Literature and Numerical
Complexity Analysis
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D.1 CONDITIONS OF LITERATURE

In the following, stabilization conditions for nonlinear systems
represented by T-S fuzzy models deriving from literature works are
presented. The structure of this appendix is as follows: conditions in
Sections D.2.1 and D.2.2 deals with state feedback problem and were
used to perform a Numerical Complexity Analysis in Section D.2.3, also
generating the comparative Tables 6 and 7. Section D.3 deals with the
dynamic output feedback problem and their conditions were used in
the Illustrative Example 2.3.

D.2 NUMERICAL COMPLEXITY

It is noteworthy that the numerical complexity for the solution
of LMI-based optimization problems is related to the number of scalar
decision variables, K , and the number of rows, L, of the considered
LMIs. The number of floating point operations (FLOP) or the time re-
quired to solve a problem, using interior point methods, is proportional
to K 3L (GAHINET et al., 1995; LEITE et al., 2004).

For comparison purposes, the following conditions, associated
with literature control laws, are considered:

D.2.1 Adapted conditions of Klug & Castelan (2011)

The results presented below are stabilization conditions based in
the work Klug & Castelan (2011). For this case are considered nonlinear
systems that can be represented by N-fuzzy models, as described in
(2.5). The proposed control law is based on the feedback of states and
sector nonlinearities, given by

u(k) = K(h(k))x(k) + Γ(h(k))ϕ(k). (D.1)

It is interesting to note that these conditions effectively do not
guarantee the closed-loop stability when applied to the original nonli-
near system, since the additional condition that deal with the regional
validity issue is not taken into consideration. Such factor is required to
exist a fair comparison regarding the techniques from literature.

Proposition 2 in Klug & Castelan (2011) - Adapted: Given a
real scalar λ ∈ (0, 1], suppose that there exists symmetric positive defi-
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nite matrices Qi ∈ ℜnx×nx , a positive diagonal matrix ∆ ∈ ℜnϕ×nϕ

and matrices U ∈ ℜnx×nx , Y1i ∈ ℜnu×nx and Y2i ∈ ℜnu×nϕ ,
satisfying the following conditions:





−Qj AiU + BiY1i Gi∆ + BiY2i

⋆ λ(Qi − U − U
′

) U
′

Ω
⋆ ⋆ −2∆



 < 0

∀ i, j = 1, ..., 2ns−nϕ

(D.2)





−2Qj Π1
i1 (Gi + Gq)∆ + BiY2q + BqY2i

⋆ Π2
i1 2U

′

Ω
⋆ ⋆ −4∆



 < 0

∀ j =1, ..., 2ns−nϕ , ∀ i=1, ..., 2ns−nϕ − 1 and
∀ q = i + 1, ..., 2ns−nϕ

(D.3)

with

Π1
i1 = (Ai + Aq)U + BiY1q + BqY1i,

Π2
i1 = λ(Qi + Qq − 2U − 2U

′

).

Then, the controller matrices in (D.1) computed by

Ki = Y1iU
−1 and Γi = Y2i∆−1,

are such that the origin of the closed-loop system composed by the inter-
connection of the fuzzy model (2.5) and the controller (D.1) is globally
asymptotically stable.

D.2.2 Adapted conditions of Tanaka & Wang (2001)

The results presented below are stabilization conditions based
in the work Tanaka & Wang (2001). For this case are considered the
nonlinear systems that can be represented by the following T-S fuzzy
model

x(k + 1) = A(h(k))x(k) + B(h(k))u(k)
y(k) = Cx(k)

(D.4)

and the control law by states feedback proposed as

u(k) = K(h(k))x(k). (D.5)
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Theorem 8 in Tanaka & Wang (2001) - Adapted: Given a
real scalar λ ∈ (0, 1], suppose that there exists symmetric positive
definite matrices Qi ∈ ℜnx×nx , and matrices U ∈ ℜnx×nx and
Yi ∈ ℜnu×nx , satisfying the following conditions:

[

−Qj AiU + BiYi

⋆ λ(Qi − U − U
′

)

]

< 0

∀ i, j = 1, ..., 2ns

(D.6)

[

−2Qj (Ai + Aq)U + BiYq + BqYi

⋆ λ(Qi + Qq − 2U − 2U
′

)

]

< 0

∀ j = 1, ..., 2ns , ∀ i = 1, ..., 2ns − 1 and ∀ q = i + 1, ..., 2ns

(D.7)
Then, the controller matrices in (D.5) computed by

Ki = Y1iU
−1

are such that the origin of the closed-loop system composed by the inter-
connection of the fuzzy model (D.4) and the controller (D.5) is globally
asymptotically stable.

D.2.3 Complexity Analysis

Based on the aforementioned conditions, the following cases are
considered:

• Case 1: u(k) = K(h(k))x(k) → Conditions (D.6) and (D.7)
→ Applied to classical T-S fuzzy models - linear rules;

• Case 2: u(k) = K(h(k))x(k) + Γ(h(k))ϕ(k) → Conditions
(D.2) and (D.3) → Applied to N-fuzzy models - nonlinear rules;

It should be highlighted that special precautions should be taken
into consideration by control engineers when using the obtained control
gains in the original nonlinear system, with the possibility of the loss
of performance or even instability, since the regional validity of the T-S
fuzzy model was not considered.

Tables 6 and 7 show, respectively, the values of K and L for the
Cases 1 and 2, being nx the number of states, nu the number of inputs,
ny the number of outputs, ns the number of nonlinearities handled in
a classical way and nϕ the number of nonlinearities handled by sector.
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Table 6 – Numerical complexity parameters for Case 1

Param.: u(k) = K(h(k))x(k)

K n2
x + 2nsnx

[

nu +
nx + 1

2

]

L 2nsnx [3(2ns) − 1]

Table 7 – Numerical complexity parameters for Case 2

Param.: u(k) = K(h(k))x(k) + Γ(h(k))ϕ(k)

K n2
x + n2

ϕ + 2ns−nϕ

[

nu(nx + nϕ) +
nx(nx + 1)

2

]

L 2ns−nϕ(2nx + nϕ)

[

3(2ns−nϕ) − 1
]

2

Figure 44 shows a graph of the relative complexity, i.e. the ratio
K 3L between the Cases 1 and 2, considering nx = 2, nu = 1,
ny = 1 and nϕ = 1, ..., 4. It should be noted that the use of N-Fuzzy
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Figure 44 – Comparison of numerical complexity
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models (Case 2) provides a meaningful numerical complexity reduction
compared to classical T-S fuzzy models (Case 1), which becomes more
pronounced with an increase in nϕ. This characteristic is explained by
the rule reduction provided by the nonlinear approach, dominant over
the generation of new decision variables, such as ∆ and Y2i.

D.3 ADAPTED CONDITIONS OF FENG (2010)

The results presented below are stabilization conditions based
in the work Feng (2010). For comparison purposes, the conditions
were adapted to handle with the stabilization problem, considering the
following fuzzy representation of the nonlinear system (2.1)

x(k + 1) = A(h(k))x(k) + B(h(k))u(k)
y(k) = C(h(k))x(k)

(D.8)

in which the definition of variables and functions are identical as those
established in equation (3.1). The dynamic output feedback controller
is defined by

xc(k + 1) = Â(h(k))xc(k) + B̂(h(k))y(k)
u(k) = Ĉ(h(k))xc(k)

(D.9)

where it should be emphasized that the matrix structure of Ac(h(k)),
Bc(h(k)) and Cc(h(k)) are not the same as in (3.7). The candidate
fuzzy Lyapunov function is

V (ξ(k)) = ξ
′

(k)

(

nr
∑

i=1

h(i)(k)X−1
i

)

ξ(k). (D.10)

Theorem 8.10 in Feng (2010) - Adapted: The closed-loop sys-
tem, formed by the T-S fuzzy model (D.8) and the controller (D.9), is
globally exponentially stable if exists the positive definite matrices

X̄i =
[

X̄i1 ⋆

X̄i2 X̄i3

]

, ∀i = 1, ..., nr,
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and matrices G1, U1, M , Āi, B̄i, C̄i, ∀i = 1, ..., nr, such that the
following LMIs are verified:









X̄i1 − G1 − G
′

1 ⋆ ⋆ ⋆

X̄i2 − M − I X̄i3 − U1 − U
′

1 ⋆ ⋆

AiG1 + B1i
~Cj Ai −X̄l1 ⋆

~Ai U1Ai + ~BrCi −X̄l2 −X̄l3









≤ 0

∀ i, j, r, l = 1, ..., nr

Furthermore, the controller gains can be computed by

Â(h(k)) =
(

~A(h(k)) − U1A(h(k))G1 − ~B(h(k))C(h(k))G1

−U1B1(h(k)) ~C(h(k))
)

(M − U1G1)−1
,

B̂(h(k)) = ~B(h(k)),

Ĉ(h(k)) = ~C(h(k)) (M − U1G1)−1
,

with
[

~A (h(k)) ~B (h(k)) ~C (h(k)) A (h(k)) B (h(k)) C (h(k))
]

=
nr
∑

i=1

h(i)(k)
[

~Ai
~Bi

~Ci Ai Bi Ci

]

.

Proof The procedures used for determining the conditions of the above
theorem can be found in Chapter 8 of the work Feng (2010).



APPENDIX E -- Projections
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E.1 PROJECTION OF AN ELLIPSOID

Consider E(P ) a ellipsoid such that ξ
′

P ξ ≤ 1, with ξ =
[

x
xc

]

. It is desired to obtain the projection of this ellipsoid over,

for example, the subspace of x. Thus, for a given E(P ), it has the
following decomposition

P =
[

P11 P12

P
′

12 P22

]

> 0

and the definition

ξ =
[

x
xc

]

=
[

I 0
−P −1

22 P
′

12 I

] [

x
x̆c

]

.

Notice that P −1
22 exists, because P > 0. Hence, ξ

′

P ξ ≤ 1 can be
rewritten as

[

x
′

x̆
′

c

]

[

I −P12P −1
22

0 I

][

P11 P12

P
′

12 P22

][

I 0
−P −1

22 P
′

12 I

][

x
x̆c

]

≤ 1 ⇒

[

x
′

x̆
′

c

]

[

P11 − P12P −1
22 P

′

12 0
0 P22

] [

x
x̆c

]

≤ 1. (E.1)

Since x and x̆c are decoupled in equation (E.1), the associated projec-
tion can be defined by

Proj [E(P )]over x =
{

x : x
′

(P11 − P12P −1
22 P

′

12)x ≤ 1
}

. (E.2)

In this way, the Schur complement of P in relation to P22 pro-
vides the orthogonal projection of E(P ) over the portion of space rela-
tive to x.

Example - Projection of an ellipse: Let the ellipse given by:

[x y] P [x y]
′

≤ 1, P =
[

0.3 −0.4
−0.4 1

]

, (E.3)

to which it is desired to obtain the orthogonal projections over the axes
x and y. Using the definition in (E.2), the projections are equivalent
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to:


























Proj [Ellipse]over x =
{

x : x
′

(P11 − P12P −1
22 P

′

12)x ≤ 1
}

⇒ |x| ≤ 2.6726

Proj [Ellipse]over y =
{

y : y
′

(P22 − P
′

12P −1
11 P12)y ≤ 1

}

⇒ |y| ≤ 1.4639
(E.4)

The graphics of the ellipse (represented by a continuous line) and
its projections obtained by (E.4) (where the projections over x and y
are represented by a dashed and dashed-dotted lines, respectively) are
shown in Figure 45.
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Figure 45 – Projection of an ellipse

Example - Projection of an Ellipsoid: Let the generic ellipsoid
ξ

′

P ξ ≤ 1, with ξ ∈ ℜ3. The Figure 46 represents the ellipsoid trans-
lated from the state space origin (for the sake of better visualization),
as well as its projection (green ellipse) over a plane formed by the green
and red axes, and the respective intersection over the same plane (red
ellipse).
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Figure 46 – Projection of an ellipsoid


